A note on the zeros of polar derivative of a polynomial

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0014

Abstract

In $[4,7]$, Enestrom Kakeya theorem has stated as the following. If $f(z)=\sum_{j=0}^n k_j z^j$ is the $n^{t h}$ degree polynomial with real coefficients such that $0<k_0 \leq k_1 \leq \ldots \leq k_{n-2} \leq k_{n-1} \leq k_n$ then all zeros of $\mathrm{f}(\mathrm{z})$ lies in $|z| \leq 1$. In [1], Aziz and Mahammad, showed that zeros of $f(z)$ satisfies $|z| \geq \frac{n}{n+1}$ are simple, under the same conditions. In this paper, we extend the above result to the polar derivative by relaxing the hypothesis in different ways.

Keywords:

Zeros, polynomial,, Enestr¨om-Kakeya theorem, polar derivative.

Mathematics Subject Classification:

Mathematics
  • K. Praveen Kumar Department of Mathematics, Gpt.Vikarabad, Department of Technical Education, Telangana-501102, India.
  • B. Krishna Reddy Department of Mathematics, UCS, Osmania University, Hyderabad, Telangana-500007, India.
  • Pages: 405-413
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

Abdul Aziz, Q.G.Mahammad, On the zeros of certain class of polynomials and related analytic functions, $J$. Math. Anal. Appl., 75(1980), 495-502.

Abdul Aziz, Q.G.Mahammad, Zero free regions for polynomials and some generalizations of EnestromKakeya theorem, Cana. Math. Bull., 27(3)91984), 265-272.

Bairagi, Vinay kumar, Saha, T.K. Mishra, On the location of zeros of certain polynomials , publication de L'institut mathematics, Nuvelle serie, tome, 99(113)(2016), 287294.

G.Eneström, Remarquee sur un théorèmerelatif aux racines de l'equationa_n+⋯+a_0=0 oü tous les coefficient sont et positifs, Tôhoku Math. J. 18 (1920). 34-36.

C. Gangadhar, P.Ramulu and G.L Reddy, Zero free regions of polar derivatives of polynomial with restricted coefficients, IJPEM, 4(30(2016), 67-74.

M.H.Gulzar, B.A.Zargar, R.Akhter, On the zeros of the polar derivative of polynomial, Communication Nonlinear Analysis, 6(1)(2019), 32-39.

S.KAKEYA, On the limits of the roots of an alegebraic equation with positive coefficient, Tôhoku Math. J, 2(1912-1913), 140-142.

P. Ramulu and G.L Reddy, On the zeros of polar derivatives, International Journal of Recent Research in Mathematics Computer Science and Information Technology, 2(1)(2015), 143-145.

G.L. Reddy, P.Ramulu and C.Gangadhar, On the zeros of polar derivatives of polynomial, Journal of Research in Applied Mathematics, 2(4)(2015), 07-10.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

K. Praveen Kumar, and B. Krishna Reddy. “A Note on the Zeros of Polar Derivative of a Polynomial”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 405-13, doi:10.26637/MJM0802/0014.