Analytic solution of fractional order differential equation arising in RLC electrical circuit

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0016

Abstract

In this paper, we obtain the analytical solution of a non-integer order differential equation which is associated with a RLC electrical circuit. The order of fractional differential equation depends upon \(\alpha\) and \(\beta\), where \(\alpha \in(1,2]\) and \(\beta \in(0,1]\). Further, we use Elzaki transform with its different properties to obtain the solution of fractional differential equation and obtain the solution in terms of three parameter Mittag-Leffler function. In the last, we have presented an example to show effectiveness of Elzaki transform in solving electrical circuit problems.

Keywords:

Model of RLC circuit, non-integer order differential equation, Elzaki transform, Mittag-Leffler function.

Mathematics Subject Classification:

Mathematics
  • Anju Devi Department of Mathematics, NIILM University, Kaithal, Haryana-136027, India.
  • Manjeet Jakhar Department of Mathematics, NIILM University, Kaithal, Haryana-136027, India.
  • Pages: 421-426
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

J.F. Gomez, C.M. Astorga, R.F. Escobar, M.A. Medina, R. Guzman, A. Gonza leg and D. Baleanu, Overview of simulation of fractional differential equation using numerical Laplace transform, Cent. Eur. J. Phys., (2012), $1-14$.

P.V. Shah, A.D. Patel, I.A. Salehbhai and A.K. Shula, Analytic solution for the RL electric circuit model in fractional order, Abstract and Applied Analysis, (2014), (http://dx.doi.org/10.1155/2014/343814).

J.P. Chauhan, P.V. Shah, R.K. Jana and A.K. Shukla, Analytic solution for RLC circuit of non-integer order, Italian J. of Pure and App. Mathematics, 36(2016), 819826.

G.M., Mittag-Leffler, Surla nouvelle function $E_alpha(x), C R$ Acad Sci., 137(1903), 554-558.

A. Wiman, Uber de Fundamental Satz in der Theorie der Funktionen E(x), Acta Mathematica, 29(1)(1905), 191-201.

T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Mathematical Journal, 19(1971), 7-15.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier: San Diego, CA, USA, (2006).

I. Podlubny, Fractional differential equations, Academic Press California USA 1999.

K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, (1993).

Tarig M. Elzaki, The new integral transform 'Elzaki Transform', Global Journal of Pure and Applied Mathematics, 7(1)(2011), 57-64.

T. M. Elzaki and S. M. Elzaki, On the connections between Laplace and Elzaki transform, Advances in Theoretical and Applied Mathematics, 6(1)(2011), 1-11.

H. Kim, The time shifting theorem and the convolution for Elzaki transform, Int. J. of Pure and App. Math., $87(2)(2013), 261-271$.

J. F. Gomez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernandez, D. Baleanu, R.F. Escobar-Jimenez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local kernels, Entropy, 18(402)(2016), doi: 10.3390 / e 18080402.

T. M. Elzaki and S. M. Elzaki, On Elzaki Transform and ordinary differential equation with variable coefficients, Advances in Theoretical and Applied Mathematics, 6(1)( 2011), 13-18.

H. Kim, A note on the shifting theorems for the Elzaki transform, Int. Journal of Math. Analysis, 8(10)(2014), 481-488.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

Anju Devi, and Manjeet Jakhar. “Analytic Solution of Fractional Order Differential Equation Arising in RLC Electrical Circuit”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 421-6, doi:10.26637/MJM0802/0016.