Coefficient bounds for a class of univalent functions involving the modified Sigmoid function

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0021

Abstract

New class of univalent functions which are analytic in the open unit disk \(\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}\) using the modified Salagean operator involving the modified sigmoid function was defined. Coefficient bounds, the Fekete-Szego functional and some consequences of the results obtained were established.

Keywords:

Analytic function, Sigmoid function, Coefficient bounds, Fekete-Szego functional, Sălăgean differential operator

Mathematics Subject Classification:

Mathematics
  • Pages: 454-458
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

S. Altinkaya, Y. S. Ȯzkan, On Salagean type pseudostarlike functions, Acta Et Commentationes Universitatis Tartuensis De Mathematica , 21(2)(2017), 275-285.

O.A. Fadipe-Joseph, A.T. Oladipo and A.U. Ezeafulukwe, Modified Sigmoid Function in Univalent Theory. International Journal of Mathematics Science and Engineering Applications (IJMSEA). 7(v)(2013), 313-317.

O.A. Fadipe-Joseph, B.O. Moses and M.O Olayemi, Certain New Classes of Analytic Functions defined by using Sigmoid Function. Advances in Mathematics: Scientific Journal 5(1)(2016), 83-89.

A.W. Goodman, Univalent Functions. Vols. 1-2, Mariner, Tampa Florida. (1983).

Khalifa Al-Shaqsi, MaslinaDarus and O.A. FadipeJoseph, A New Subclass of Salagean-Type Harmonic Univalent Functions, Abstract and Applied Analysis (2010), 2010.

P. Mini and S. Keerthi, Coefficient Inequality for New Subclass of Sakaguchi Type Function Related to Sigmoid Functions. International Journal of Recent Technology and Engineering, 7(5S)(2019), 467-471.

G. Murugusundaramoorthy and T. Janani, Sigmoid Function in the Space of Univalent λ- Pseudo Starlike Functions. International Journal of Pure and Applied Mathematics, 101(1)(2015), 33-41.

C. Ramachandran and K. Dhanalakshmi The FeketeSzego problem for a subclass of analytic functions related to Sigmoid function. International Journal of Pure and Applied Mathematics, 113(3)(2017), 389-398.

G.S. Sǎlăgean, Subclasses of Univalent Functions. Lecture Note in Math. 1013, Springer-Verlag, Berlin, Heidelberg and New York. (1983),362-372

G. Singh and G. Singh, A Generalized Subclass of Multivalent Functions Related to Sigmoid function. Journal of Ultra Scientist of Physical Sciences, 30(3)(2018), 164171.

X. Wang and Z. Wang, Coefficient inequality for a new subclass of analytic and univalent functions related to sigmoid function, International Journal of Modern Mathematical Sciences, 16(1)(2018), 51-57.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

Olubunmi A. Fadipe-Joseph, O. J. Windare, and Esther O. Davids. “Coefficient Bounds for a Class of Univalent Functions Involving the Modified Sigmoid Function”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 454-8, doi:10.26637/MJM0802/0021.