Extended energy of some standard graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0032

Abstract

This paper finds the extended energy of some special class of graphs and their complement graphs. Let $G=(V, E)$ be a simple graph with vertex set $V(G)=\left\{v_1, v_2, \ldots v_n\right\}$ and edge set $E(G)$. The Extended energy $E_{\text {ext }}(G)$ is defined to be the sum of the absolute eigen values of its extended adjacency matrix $A_{e x t}(G)$.

Keywords:

Extended adjacency matrix, spectral radius, spectrum of graphs, extended energy

Mathematics Subject Classification:

General Mathematics
  • D. Cokilavany Department of Mathematics, Anna University, Chennai-600025, Tamil Nadu, India.
  • Pages: 510-516
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch-ungszentram. Graz, 22(103)(1978), 1-22.

I. Gutman, Topology and stability of conjugated hydrocarbons: the dependence of total $pi$ - electron energy on molecular topology, J. Serb. Chem. Soc, 70(2005), $441-456$.

I. Gutman, X.Li, Y.Shi, Graph Energy, New York, Springer, 2012.

A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer, 2010.

I. Gutman, The Energy of Graph-Old and New Results, Algebraic Combinatorics and Applications, Springer, Berlin, (2000), 196-211.

R.B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc., 1(2004), 129-132.

I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra and its Applications, 414(2006), 29-37.

T. Aleksic, Upper bounds for laplacian energy of graphs, Match Communications. Math. Comput. Chem., 60(2008), $435-439$.

R. Li, Some lower bounds for laplacian energy of graphs, Int. J. Contemp. Math. Sciences, 4(5)(2009), 219-223.

S. Pirzada, H.A.Ganie, On the laplacianeigen values of a graph and laplacian energy, Linear Algebra and its Applications, 486(2015), 454-468.

C. Adiga, E. Sampathkumar, M.A. Sriraj and A.S. Shrikanth, Color energy of graphs, Proc. JangjeonMath.Soc., 16(2013), 335-351.

P.G. Bhat, S.D'Souza, Color Laplacian energy of a graph, Proc. JangjeonMath.Soc., 18(2015), 321-330.

P.G. Bhat, S.D'Souza, ColorSignless Laplacian energy of a graphs, AKCE International Journal of Graphs and Combinatorics, (2017), 1-12.

Y. Yang, L. Xu, C.Y.Hu, Extended adjacency matrix indices and their applications, J. Chem. Inf. Comput. Sci, 34(1994), 1140-1145.

K. C. Das, I. Gutman, B. Furtula, On spectral radius and energy of extended adjacency matrix of graphs, Applied Mathematics and Computations, 296(2017), 116-123.

G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, Match Communications. Math. Comput. Chem., 60(2008), 461-472

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

D. Cokilavany. “Extended Energy of Some Standard Graphs”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 510-6, doi:10.26637/MJM0802/0032.