An evaluation of mixed type polynomial approximation with certain condition on the roots of Hermite polynomial

DOI:

https://doi.org/10.26637/MJM0802/0039

Abstract

The purpose of this paper is to find a polynomial \(R_n(x)\) of degree \(\leq(3 n-1)\) satisfying \((1,0 ; 0)\) interpolation under certain condition at given knots, also explicit representation of fundamental polynomials and convergence theorem of \(R_n(x)\) has been analyzed.

Keywords:

Hermite polynomial, Explicit representation, Approximation on real line, Estimation

Mathematics Subject Classification:

Mathematics
  • R. Srivastava Department of Mathematics and Astronomy, Lucknow University, Lucknow-226007, India.
  • Dhananjay Ojha Department of Mathematics and Astronomy, Lucknow University, Lucknow-226007, India.
  • Pages: 551-555
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

L.G. Pál, A new modification of the Aermitefejér interpolation, Analysis Math. 1(1975), 197-205.

S. A. Eneduanya, On the convergence of interpolation polynomials, Analysis Math., 11(1985), 13-22.

L. Szili, Weighted (0,2)-interpolation on the roots of Hermite polynomials, Annals Univ. Sci. Budapest Eötö Sect. 27(1984), 153-166.

Joó, I.,OnPál Interpolation, Annales Univ.Sci. Budapest, Sect. Math., 37(1994), 247-262.

Z.F.Sebestyén, Supplement to the Pál type (0 ; 0,1) lacunary interpolation, Analysis Mathematica, 25(1999), 147-154

Rekha Srivastava and K.K Mathur, An interpolation process on the roots of hermite polynomials (0 ; 01) interpolation on infinite interval, Bull. of the Inst. of Mathe. Sinica. 26(1998), 229-237.

Yamini Singh and R. Srivastava, An analysis of (0,1: 0) interpolation based on the zeros of ultraspherical polynomials, Bulletin of the Transilvania University of Brasov, 12(1) (2019), 1-10.

L Szili, A convergence theorem for the Pál method of interpolation on the roots of Hermite polynomials, Anal. Math., 11(1985), 75-84.

G. Freud, On polynomial approximation with the weight exp (- 1/2 x^2k) ibid, 24(1973), 363-371.

G. Freud, On two polynomial inequalities I, Acta Math. Acad. Sci. Hung., 22(1972), 137-145.

G. Szegö Orthogonal polynomial, Amer. Math. Soc., Coll. Publ., New York, 1959, 1-10.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

R. Srivastava, and Dhananjay Ojha. “An Evaluation of Mixed Type Polynomial Approximation With Certain Condition on the Roots of Hermite Polynomial”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 551-5, doi:10.26637/MJM0802/0039.