An evaluation of mixed type polynomial approximation with certain condition on the roots of Hermite polynomial
DOI:
https://doi.org/10.26637/MJM0802/0039Abstract
The purpose of this paper is to find a polynomial \(R_n(x)\) of degree \(\leq(3 n-1)\) satisfying \((1,0 ; 0)\) interpolation under certain condition at given knots, also explicit representation of fundamental polynomials and convergence theorem of \(R_n(x)\) has been analyzed.
Keywords:
Hermite polynomial, Explicit representation, Approximation on real line, EstimationMathematics Subject Classification:
Mathematics- Pages: 551-555
- Date Published: 01-04-2020
- Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
L.G. Pál, A new modification of the Aermitefejér interpolation, Analysis Math. 1(1975), 197-205.
S. A. Eneduanya, On the convergence of interpolation polynomials, Analysis Math., 11(1985), 13-22.
L. Szili, Weighted (0,2)-interpolation on the roots of Hermite polynomials, Annals Univ. Sci. Budapest Eötö Sect. 27(1984), 153-166.
Joó, I.,OnPál Interpolation, Annales Univ.Sci. Budapest, Sect. Math., 37(1994), 247-262.
Z.F.Sebestyén, Supplement to the Pál type (0 ; 0,1) lacunary interpolation, Analysis Mathematica, 25(1999), 147-154
Rekha Srivastava and K.K Mathur, An interpolation process on the roots of hermite polynomials (0 ; 01) interpolation on infinite interval, Bull. of the Inst. of Mathe. Sinica. 26(1998), 229-237.
Yamini Singh and R. Srivastava, An analysis of (0,1: 0) interpolation based on the zeros of ultraspherical polynomials, Bulletin of the Transilvania University of Brasov, 12(1) (2019), 1-10.
L Szili, A convergence theorem for the Pál method of interpolation on the roots of Hermite polynomials, Anal. Math., 11(1985), 75-84.
G. Freud, On polynomial approximation with the weight exp (- 1/2 x^2k) ibid, 24(1973), 363-371.
G. Freud, On two polynomial inequalities I, Acta Math. Acad. Sci. Hung., 22(1972), 137-145.
G. Szegö Orthogonal polynomial, Amer. Math. Soc., Coll. Publ., New York, 1959, 1-10.
- NA
Similar Articles
- R. Aruldoss, R. Anusuya Devi, A generalized fractional integral transform with exponential type kernel , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
- S.S. Redhwan, S.L. Shaikh, M.S. Abdo, S.Y. Al-Mayyahi, Sadik transform and some result in fractional calculus , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.