On the \(k\)-distant total labeling of graphs

DOI:

https://doi.org/10.26637/MJM0802/0040

Abstract

A labeling of a graph is a mapping that maps some set of graph elements to a set of numbers. In this paper, two new variations of labeling named $k$-distant edge total labeling and $k$-distant vertex total labeling are introduced. Moreover, the study of two new graph parameters, called $k$-distant edge chromatic number $\left(\gamma_{k d}^{\prime}\right)$ and $k$-distant vertex chromatic number $\left(\gamma_{k d}\right)$ related this labeling are initiated. The $k$-distant vertex total labeling for paths, cycles, complete graphs, stars, bi-stars and friendship graphs are studied and the value of the parameter $\gamma_{k d}$ determined for these graph classes. Then $k$-distant edge total labeling for paths, cycles and stars are studied. Also, an upper bound of $\gamma_{k d}$ and a lower bound of $\gamma_{k d}^{\prime}$ are presented for general graphs.

Keywords:

Graph Labeling, total labeling, \(k\)-distant vertex total labeling, \(k\)-distant edge total labeling

Mathematics Subject Classification:

General Mathematics
  • Akul Rana Department of Mathematics, Narajole Raj College, West Bengal-721211, India.
  • Pages: 556-560
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

S. Arumugam, M. Baca, D. Froncek, J. Ryan and K. A. Sugeng, Some open problems in graph labelling, $A K C E$ Int. J. Graphs Comb., 10(2) (2013), 237-243.

M. Baca, S. Jendrol, M. Miller and J. Ryan, On irregular total labeling, Discrete Math., 307 (2007), 1378-1388.

J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2014), DS6.

A. Kotzig, and A. Rosa, Magic valuations of finite graphs, Canadian Mathematical Bulletin, 13 (1970), 451-461.

A. Rana, A. Sinha and A. Pal, On Roman domination of circular-arc graphs, Int. J. Advanced Intelligence Paradigms, DOI: 10.1504/IJAIP.2018.10020075

A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, Int. Symp. Rome, (1966), 349-355.

J. Sedlacek, Problem 27, Theory of Graphs and Its Applications, Proceedings of the Symposium held in Smolenice, (1963), 163-167.

A. Sinha, A. Rana and A. Pal, Signed Edge Domination Number of Interval Graphs, Electronic Notes in Discrete Mathematics 63 (2017), 279-286.

B. M. Stewart, Magic Graphs, Canadian Journal of Mathematics, 18 (1966), 1031-1059.

W. D. Wallis, Magic Graphs, Birkhauser, Boston, 2001.

A. M. Marr and W.D. Wallis, Magic Graphs, Birkhauser/Springer, New York, 2013.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

Akul Rana. “On the \(k\)-Distant Total Labeling of Graphs”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 556-60, doi:10.26637/MJM0802/0040.