Coefficient estimates for Bi-univalent functions with respect to symmetric conjugate points associated with Horadam Polynomials
Downloads
DOI:
https://doi.org/10.26637/MJM0802/0042Abstract
In this investigation, we propose to make use of the Horadam polynomials, we introduce a class of bi-univalent functions with respect to symmetric conjugate points. For functions belonging to this class, the coefficient bounds and the Fekete-Szeg¨o bounds are discussed. Some interesting remarks of the results presented here are also investigated.
Keywords:
Analytic functions, bi-univalent functions, Horadam polynomial, Fekete-Szeg¨o inequalityMathematics Subject Classification:
Mathematics- Pages: 565-569
- Date Published: 01-04-2020
- Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
C. Abirami, N. Magesh, J. Yamini and N. B. Gatti, Horadam Polynomial coefficient estimates for the classes of λ-bi-pseudo-starlike and Bi-Bazilevič Functions, $J$. Anal., (2020), 1-10(https://doi.org/10.1007/s41478-02000224-2).
C. Abirami, N. Magesh and J. Yamini, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstract and Applied Analysis, Art. ID 7391058 (2020), 1-10.
R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Mindastarlike and convex functions, Appl. Math. Lett., 25(3)(2012), $344-351$.
F. M. Al-Oboudi, On Classes of Functions Related to Starlike Functions with Respect to Symmetric Conjugate Points Defined by a Fractional Differential Operator, Complex Anal. Oper. Theory, 5(2011), 647-658.
Ş. Altınkaya and S. Yalçin, Fekete-Szegö Inequalities for Certain Classes of Biunivalent Functions, International Scholarly Research Notices, Volume 2014, Article ID 327962, 6 pages
Ş. Altınkaya and S. Yalçin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, 2015 Art. ID 145242, (2015), 1-5.
Ming-Po Chen, Zhwo-Ren Wu and Zhong-Zhu Zou, On functions starlike with respect to symmetric conjugate points, J. Math. Anal. Appl., 201(1996), 25-34.
O. Crisan, Coefficient Estimates for Certain Subclasses of Bi-Univalent Functions, Gen. Math. Notes, 16(2)(2013), 93-102. ISSN 2219-7184.
R. M. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2(1987), 86-100.
A. F. Horadam, J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23(1985), 7-20.
T. Hörçum, E. GökçenKoçer, On some properties of Horadam polynomials, Int Math Forum, 4(2009), $1243-$ 1252.
A.Y. Lashin, On certain subclasses of analytic and biunivalent functions, Journal of the Egyptian Mathematical Society, 24(2016), 220-225.
V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Mathematica AcademiaePaedagogicaeNyregyhaziensis, 20(2004), 31-37.
G. Singh, Coefficient estimates for bi-univalent functions with respect to symmetric points, J. Nonlinear Funct. Anal., (2013), 1-9.
J. Sokol, Function starlike with respect to conjugate point, ZeszytyNauk. Politech. Rzeszowskiej Mat. Fiz, 12(1991), $53-64$.
H. M. Srivastava, Ş. Altınkaya and S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran J Sci Technol Trans Sci., $(2018), 1-7$
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10)(2010), 1188-1192.
H. Tang and G. Deng, Coefficient estimates for new subclasses of analytic functions with respect to other points, Tamkang J. Math., 44(2)(2013), 141-148.
H. Tang and G.-T. Deng, New subclasses of analytic functions with respect to symmetric and conjugate points, J. Complex Anal., 2013, Art. ID 578036, 9 pp.
A. K. Wanas, A. H. Majeed, Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points, Applied Mathematics E-Notes, 19(2019), 14-21.
- NA
Similar Articles
- Akul Rana, On the \(k\)-distant total labeling of graphs , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
- Ariel C. Pedrano, Ricky F. Rulete , On the total product cordial labeling on the cartesian product of $P_m \times C_n$, $C_m \times C_n$ and the generalized Petersen graph $P(m, n)$ , Malaya Journal of Matematik: Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
- Sivagnanam Mutharasu, Duraisamy Kumar, $V_k$-Super vertex magic labeling of graphs , Malaya Journal of Matematik: Vol. 6 No. 04 (2018): Malaya Journal of Matematik (MJM)
- Sindhu Murugan, S. Chandra Kumar, \(C_m\)-\(E\)-super magic graceful labeling of graphs , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.