Fixed points of almost generalized weakly contractive maps with rational expressions in \(S\)-metric spaces
Downloads
DOI:
https://doi.org/10.26637/MJM0802/0047Abstract
In this paper, we prove the existence and uniqueness of fixed points of $(\varphi, \psi)$-almost generalized weakly contractive maps with rational expressions in S-metric spaces. Also, we prove the existence and uniqueness of fixed points of $\alpha$-admissible almost weak $\psi$-contraction maps with rational expressions in $S$-metric spaces. Our results extend the results of Jaggi [16] , Dass and Gupta [10] to $S$-metric spaces. Also our results extend and generalize the results of Sedghi, Shobe and Aliouche [21]. Supporting examples are provided to our results.
Keywords:
S-metric space, fixed point, almost generalized weakly contractive maps, \(alpha\)-admissible mapsMathematics Subject Classification:
Mathematics- Pages: 593-601
- Date Published: 01-04-2020
- Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
M. Arshad, E. Karapinar, and J. Ahmad, Some unique fixed point theorems for rational contractions in partially ordered metric spaces, Journal of Inequalities and Applcations, 2013 (248)(2013), pages 16.
G. V. R. Babu, D. Ratna Babu, K. Nageswara Rao, B. V. Siva Kumar, Fixed points of (ψ,φ)-Almost weakly contractive maps in G-metric spaces, Applied Mathematics E- Notes, 14(2014), 69-85.
G. V. R. Babu and P. Sudheer Kumar, Fixed points of (φ,ψ)-almost generalized weakly contractive maps withrational expressions in partially ordered metric spaces, JIMVI, $7(2017)(2017), 69-83$.
G. V. R. Babu, K. K. M. Sarma and V. A. Kumari, Fixed points of almost generalized (α,ψ)-contractions with rational expressions, Mathematical Journal of Interdisciplinary Sciences, 5(2)(2017), 101-120.
G. V. R. Babu, Leta BekereKumssa, Fixed points of (α,ψ,φ)-generalized weakly contractive maps and Property (P) in $S$-metric spaces, Filomat, 31(14)(2017), 44694481.
G. V. R. Babu, P. D. Sailaja, G. Srichandana, Common fixed points of (α,ψ,φ) - almost generalized weakly contractive maps in S-metric spaces, Commun. Nonlinear Anal., 7 (1)(2019), 17-35.
V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9(1)(2004), 43-53.
V. Berinde, General constructive fixed point theorems for Ciric-type almost contractions in metric spaces, Carpath. J. Math., 24(2)(2008), 10-19.
S. Chandok, B. S. Choudhury and N. Metiya. Fixed point results in ordered metric spaces for rational type expressions with auxiliary functions, J. Egypt. Math. Soc., 23 (1) (2015), 95-101.
B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expression, Indian $J$. Pure Appl. Math., 6(1975), 1455-1458.
D. Doric, Common fixed point for generalized (ψ,φ) weak contractions, Appl. Math. Lett., 22(2009), 18961900.
T. Dosenovic, S. Radenovic, A. Rezvani and S. Sedghi, Coincidence point theorems in S-metric spaces using inegral type of contraction, U. P. B. Sci. Bull. Series A, 79 (4)(2017), pages 15 .
N. V. Dung, N. T. Hieu, and S. Radojevic, Fixed point theorems for g-monotone maps on partially ordered S metric spaces, Filomat, 28(9)(2014), 1885-1898.
P. N. Dutta and B. S. Choudhury, A generalization contraction principle in metric spaces, Fixed Point Theory and Appl., 2008(2008), pages 8 .
J. Harjani, B. Lopez, and K. Sadarangani, A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Ab -stract and Applied Analysis, 2010(2010), pages 8 .
D. S. Jaggi, Some unique fixed point theorems, Indian Journal of Pure and Applied mathematics, 8 (2)(1977), 223-230.
G. S. Jeong and B. E. Rhoades, Maps for which F(T)=F(T^n), Fixed Point Theory and Appl., 6(2004), 71-105.
M. S. Khan, M. Swaleh and S.Sessa, Fixed point theorems by altering distance between points, Bull. Aust. Math. Soc., 30 (1)(1984), 1-9.
N. Y. Ozgur and N. Tas, Some fixed point theorems on S-metric spaces, Math. Vesnik, 69 (1)(2017), 39-52.
B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for(α,ψ)-contractive type mappings, Non-linear Analysis, 75(4)(2012), 2154-2165.
S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorem in $S$-metric spaces, Math. Vesnik, 64(2012), 258-266.
S. Sedghi and N. V. Dung, Fixed point theorems on Smetric spaces, Math. Vesnik, 66(2014), 113-124.
- NA
Similar Articles
- B. N. Hanumagowda, Tesymol Cyriac, H.S. Doreswamy, A. Salma, Analysis of static and dynamic characteristics of Secant slider bearing with MHD and couple stress fluid , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.