Several exact solutions for three dimensional Schrodinger equation involving inverse square and power law potentials

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0056

Abstract

Several exact solutions for steady state Schrodinger equation in three dimensional space are derived in this
paper. The potentials are taken to be sum of an inverse square potential and a power law potential.  Different new exact solutions of Schrodinger equation are derived for this potential with zero energy. The solutions are derived in cartesian coordinates without separation of variables. Certain exact solutions for non-zero energy are also derived for Schrodinger equation with inverse square potential.

Keywords:

Schrodinger equation, Exact solution, Zero and non-zero energy, Inverse Square Potential, Power Law Potential

Mathematics Subject Classification:

Mathematics
  • Subin P. Joseph Department of Mathematics, Government Engineering College, Wayanad-670644, Kerala, India.
  • Pages: 650-656
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

K. Ahn, M. Y. Choi, B. Dai, S. Sohn and B. Yang, Modeling stock return distributions with a quantum harmonic oscillator, Europhysics Letters, 120(3) (2018), https://doi.org/10.1209/0295-5075/120/38003

A. D. Alhaidari, Exact solutions of Dirac and Schrödinger equations for a large class of power-law potentials at zero energy, International Journal of Modern Physics A(Particles and Fields; Gravitation; Cosmology), 17(30)(2002), 4551-4566.

B. E. Baquie, Quantum Finance, Cambridge Univ. Press, Cambridge, 2004.

B. Bagchi, C. Quesne, Zero-energy states for a class of quasi-exactly solvable rational potentials, Physics Letters A, 230(1-2) (1997), 1-6.

G. Chen, D. A. Church, B.G. Englert, C. Henkel, B. Rohwedder, M. O. Scully, and M. S. Zubairy, Quantum Computing Devices: Principles, Designs, and Analysis, Chapman and Hall/CRC, New York, 2007.

Jamil Daboul and Michael Martin Nieto, Exact, E=0, classical solutions for general powerlaw potentials, Phys. Rev. E, 52, (1995), https://doi.org/10.1103/PhysRevE.52.4430

C. Eckart, The penetration of a potential barrier by electrons, Phys. Rev. 35(11)(1930), 1303-1309

M. N. Farizky, A. Suparmi , C. Cari, M. Yunianto, Solution of three dimensional Schrodinger equation for Eckart and Manning-Rosen non-central potential using asymptotic iteration method, Journal of Physics: Conference

Frederick L. Scarf, New Soluble Energy Band Problem, Phys. Rev. 112 (1958), https://doi.org/10.1103/PhysRev.112.1137

Elisa Guillaumín-España, H. N. Núñez-Yépez, and A. L. Salas-Brito, Classical and quantum dynamics in an inverse square potential, Journal of Mathematical Physics, 55(2014), 103509, https://doi.org/10.1063/1.4899083

M. Hamzavi and S.M. Ikhdair, Approximate 1state solution of the trigonometric Pöschl-Teller potential, Molecular Physics, 110(24)(2012), https://doi.org/10.1080/00268976.2012.695029

Felix Iacob, and Marina Lute, Exact solution to the Schrödinger's equation with pseudo-Gaussian potential, Journal of Mathematical Physics, 56(2015), 121501, https://doi.org/10.1063/1.4936309

A. M. Ishkhanyan, Exact solution of the Schrödinger equation for the inverse square root potential V_0/√x, Europhysics Letters,112(1) (2015), https://doi.org/10.1209/0295-5075/112/10006

T. Kobayashi, T. Shimbori, Zero-energy solutions and vortices in Schrödinger equations, Phys. Rev. A, 65(2002), https://doi.org/10.1103/PhysRevA.65.042108

A. J.Makowski, Exact, zero-energy, square-integrable solutions of a model related to the Maxwell's fish-eye problem, Annals of Physics, 324(12)(2009), 2465-2472.

R. P. Martínez-y-Romero, H. N. Núñez-Yépez, and A. L. Salas-Brito, The two dimensional motion of a particle in an inverse square potential: Classical and quantum aspects, Journal of Mathematical Physics, 54(2013), 053509, doi: 10.1063/1.4804356.

F.Millard, Manning and Nathan Rosen A Potential Function for the Vibrations of Diatomic Molecules, Phys. Rev. $44(10)(1933) 953-960$

P. M.Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev. 34(1929), 5764 ,https://doi.org/10.1103/PhysRev.34.57

O. Mustafa, Auxiliary Quantization Constraints on The Von Roos Ordering-Ambiguity at Zero Binding Energies; Azimuthally Symmetrized Cylindrical Coordinates, Modern Physics Letters A: Particles and Fields; Gravi-tation; Cosmology and Nuclear Physics, 28(19)(2013), https://doi.org/10.1142/S021773231350082X

I. H. Naeimi, J. Batle , S. Abdalla, Solving the twodimensional Schrödinger equation using basis truncation: A hands-on review and a controversial case, Pramana $-J$. Phys. 89(2017), 70, https://doi.org/10.1007/s12043-017$1467-mathrm{z}$

T. Olsen, S. Latini, F. Rasmussen, K. S. Thygesen, Simple Screened Hydrogen Model of Excitons in TwoDimensional Materials, Phys. Rev. Lett. 116(2016), httos://doi.org/10.1103/PhvsRevLett116.056401

J. Pade, Exact solutions of the Schrödinger equation for zero energy, Eur. Phys. J. D, 53(2009), https://doi.org/10.1140/epjd/e2009-00074-0

G. P'oschl, E. Teller, BemerkungenzurQuantenmechanik des anharmonischenOszillators, Zeitschriftf'urPhysik 83(34)(1933), 143-151.

N. Rosen P. M. Morse On the Vibrations of Polyatomic Molecules, Phys. Rev. 42(1932), 210-217.

M. S. Abdalla and H. Eleuch, Exact analytic solutions of the Schrödinger equations for some modified q-deformed potentials, J. Appl. Phys. ,115(2014), 234906, doi: $10.1063 / 1.4883296$

V. Tayari, N. Hemsworth, I. Fakih, A. Favron, E. Gaufrès, G. Gervais, R. Martel, T. Szkopek, Two-dimensional magnetotransport in a black phosphorus naked quantum well, Nature Communications 6 (2015), 7702, doi:10.1038/ncomms8702.

T. Gao, Y. Chen, A quantum anharmonic oscillator model for the stock market, Physica A: Statistical Mechanics and its Applications. 468(2017), 307-314.

V. M. Vasyutaa V. M. Tkachuk, Falling of a quantum particle in an inverse square attractive potential, Eur. Phys. J. D, 70(2016), 267, https://doi.org/10.1140/epjd/e201670463-3

R. D. Woods, D. S.Saxon, Diffuse Surface Optical Model for Nucleon-Nuclei Scattering, Phys. Rev ., 95(2)(1954), https://doi.org/10.1103/PhysRev.95.577

C.Zhang, L. Huang, A quantum model for the stock market, Physica A: Statistical Mechanics and its Applications, $389(24)(2010), 5769-5775.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

Subin P. Joseph. “Several Exact Solutions for Three Dimensional Schrodinger Equation Involving Inverse Square and Power Law Potentials”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 650-6, doi:10.26637/MJM0802/0056.