Intuitionistic fuzzy unitary operator on intuitionistic fuzzy Hilbert space

DOI:

https://doi.org/10.26637/MJM0803/0008

Abstract

In this paper, we define Intuitionistic fuzzy unitary operator (IFU-operator) on an intuitionistic fuzzy Hilbert space (IFH-space). An operator \(\mathfrak{U} \in I F B(\mathbb{H})\) is intuitionistic fuzzy unitary operator if \(\mathfrak{U} \mathfrak{U}^*=I=\mathfrak{U}^* \mathfrak{U}\) i.e. it is an isomorphism of \(\mathbb{H}\) onto itself. By virtue of this definition, a few theorems on IFU-operator are introduced and some of its properties are discussed.

Keywords:

Intuitionistic fuzzy adjoint operator (IFA-operator), intuitionistic fuzzy normal operator (IFN-operator), intuitionistic fuzzy self-adjoint operator (IFSA-operator), intuitionistic fuzzy Hilbert space (IFH-space), intuitionistic fuzzy unitary operator (IFU-operator)

Mathematics Subject Classification:

Mathematics
  • A. Radharamani Department of Mathematics, Chikkanna Government Arts College, Tirupur-641602, Tamil Nadu, India.
  • S. Maheswari Department of Mathematics, Tiruppur Kumaran College For Women, Tirupur-641687, Tamil Nadu, India.
  • Pages: 782-786
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

A. Radharamani, S. Maheswari and A. Brindha, Intuitionistic fuzzy Hilbert space and some properties, Inter. J. Sci. Res. - (JEN), 8(9)(2018), 15-21.

A. Radharamani and S. Maheswari, Intuitionistic Fuzzy adjoint & Intuitionistic fuzzy self-adjoint operators in Intuitionistic fuzzy Hilbert space, Inter. J. Research and Analytical Reviews (IJRAR), 5(4)(2018), 248-251.

A. Radharamani and S. Maheswari, Intuitionistic Fuzzy Normal Operator on IFH-space, International Journal of Recent Technology and Engineering(IJRTE), 9(1)(2020).

A. Radharamani and S. Maheswari, Fuzzy Unitary Operator in Fuzzy Hilbert space and its Properties, International Journal of Research and Analytical Reviews (IJRAR), 5(4)(2018), 258-261.

M.Goudarzi, S. M. Vaezpour and Reza Saadati, Intuitionistic fuzzy Inner Product space, Chaos Solitons & Fractals, 41(2009), 1105-1112.

J H Park, Intuitionistic fuzzy metric spaces, Chaos Sol. Fract., 22(2004), 1039-1046.

G. F. Simmons, Introduction to Topology and Modern Analysis, New Delhi: Tata Mc Graw-Hill, (1963), 222, 273-274.

Balmohan V Limaye, Functional Analysis, New Delhi: New Age International, 1996, 460-469.

R. Saadati & J. H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos solitons & fractals, 27(2)(2006), $331-344$.

K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1)(1986), 87-96.

P. Majumdar and S. K. Samanta, On intuitionistic fuzzy normed linear spaces, Far East Journal of Mathematics, (1)(2007), 3-4.

P. Majumdar and S. K. Samanta, On Intuitionistic fuzzy Inner Product Spaces, Journal of fuzzy Mathematics, 19(1)(2011), 115-124.

S. Mukherjee and T. Bag, Some properties of fuzzy Hilbert spaces, Int. Jr. of Mat and Sci Comp, 1(2)(2010), 55

M. Goudarzi and S. M. Vaezpour, On the definition of fuzzy Hilbert space and its application, J. Nonlinear Sci. Applications, 2(1)(2009), 46-59.

Rajkumar Pradhan and Madhumangal pal, Intuitionistic fuzzy linear transformations, Annals of Pure and Appl. Math., 1(1)(2012), 57-68.

T. K. Samanta and Iqbal H Jebril, Finite dimensional intuitionistic fuzzy normed linear space, International Journal of Open Problems in Computer Science and Mathematics, 2(4)(2009), 574-591.

G.Deschrijver and E. E. Kerre, On The Representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Syst., (12)(2004), 45-61.

G. Deschrijver and E. E. Kerre, On the Relationship Between Some Extensions of Fuzzy Sets and Systems, (133)(2003), 227-235.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

A. Radharamani, and S. Maheswari. “Intuitionistic Fuzzy Unitary Operator on Intuitionistic Fuzzy Hilbert Space”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 782-6, doi:10.26637/MJM0803/0008.