Oscillation criteria for third order neutral type advanced difference equation
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0009Abstract
In this paper, we establish the oscillatory criteria for the third-order neutral type difference equation of the form
$$
\Delta\left(a(n)\left(\Delta^2(x(n)+p(n) x(n-k))\right)^\alpha\right)+q(n) f(x(n-l))=0 .
$$
We derive new oscillation condition that really take into account the advanced arguments.
Keywords:
Oscillation, third order neutral difference equationsMathematics Subject Classification:
Mathematics- Pages: 787-790
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Marcel Dekker, New York, 2000.
R. P. Agarwal, M. Bohner, S. R. Grace, D. O'Regan, Discrete Oscillation Theory, Hindawi, New York, 2005.
R. P. Agarwal, S. R. Grace, Oscillation of certain third order difference equations, Comput. Math. Appl., 42(2001), 379-384
M. Artzrouni, Generalized stable population theory, $J$. Math. Priol., 21(1985), 363-381.
S. Elayadi, An Introduction to Difference Equations, Third Edition, Springer, New York, 2005.
J. Graef and E. Thandapani, Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkcial. Ekvac., 42(1999), 355-369.
T. H. Hilderbrandt; Introduction to the Theory of Integration, Academic Press, New York, 1963.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.