Certain fractional integral inequalities using generalized Katugampola fractional integral operator

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0013

Abstract

The purpose of this paper is to obtain some new fractional integral inequalities involving convex functions by applying generalized Katugampola fractional integral operator.

Keywords:

Generalized Katugampola fractional integral, convex functions and inequality

Mathematics Subject Classification:

Mathematics
  • Pages: 809-814
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

T.A Aljaaidi and D. B. Pachpatte, Osome Grüss-type inequalities using generalized Katugampola fractional integral, AIMS Mathematics, 5(2)(2020), 1011-1024.

S. Belarbi and Z. Dahmani, On some new fractional integral inequality, J. Inequal. Pure and Appl. Math. Art., $86(10(3))(2009), 1-5$.

D. Baleanu, S. D. Purohit and J. C. Prajapati, Integral inequalities involving generalized Erdélyi-Kober fractional integral operators, Open. Math, 14(2016), 89-99.

V. L. Chinchane, New approach to Minkowski fractional inequalities using generalized K-fractional integral operator, Journal of the Indian. Math. Soc., 1-2(85)(2018), $32-41$.

V. L. Chinchane and D. B. Pachpatte, On some Grüsstype fractional inequalities using Saigo fractional integral operator, Journal of Mathematics, Article ID 527910, Vol.2014 (2014), 1-9.

V. L. Chinchane and D. B. Pachpatte, Note on fractional integral inequality involving convex function using Saigo fractional integral, Indian Journal of Mathematics, 1(61)(2019), 27-39.

V. L. Chinchane and D. B. Pachpatte, On new fractional integral inequalities involving convex functions using Hadamard fractional integral, Indian Journal of Mathematics, 2(31)(2016), 183-192.

Z. Dahmani, A note on some new fractional results involving convex functions, Acta Math. Univ. Comenianae, 81(2)(2012), 241-246.

Z. Dahmani and N. Bedjaoui, Some generalized integral inequalities, J. Advan. Res. Appl. Math., 3(4)(2011), 5866.

Z. Dahmani and H. Metakkel El Ard, Generalization of some integral inequalities using Riemann-Liouville operator, Int. J. Open Problem Compt. Math. 4(4)(2011), $40-46$.

A. A. George, Fractional Differentiation Inequalities, Springer Publishing Company, New York, 2009.

U. N. Katugampola, A new approch to generalized fractional derivatives, Bull. Math. Anal. Appl., 6(4)(2014), $1-15$.

U. N. Katugampola, new fractional integral unifying six existing fractional integral, arXiv: 1612.08596 [math.CA] (2016), 1-6.

S. Kilinc and H. Yildirim, Generalized fractional integral inequalities involving Hypergeometic operators, Int. J. Pure Appl. Math., 101(1)(2015), 71-82.

V. Kiryakova, On two Saigo's fractional integral operator in the class of univalent functions, Fract. Calc. Appl. Anal. 9(2)(2006), 1-10.

A. R. Prabhakaran and K. Srinivasa Rao, Saigo operator of fractional integration of Hypergeometric functions, Int. J. Pure Appl. Math. 81(5)(2012), 755-763.

S. D. Purohit and R. K. Raina, Chebyshev type inequalities for the Saigo fractional integral and their q- analogues, J. Math. Inequal., 7(2)(2013), 239-249.

S. D. Purohit and R. K. Raina, Certain fractional integral inequalities involving the Gauss hypergeometric function, Rev. Tec. Ing. Univ. Zulia 37(2), (2014), 167-175.

M. Saigo, A remark on integral operators involving the Grüss hypergeometric functions, Math. Rep. Kyushu Univ, 11(1978), 135-143.

J. Vanterler da C. Sousa D. S. Oliveira E. Capelas de Oliveira, Grüss- type inequalities by means of generalized fractional integrals, Bull Braz, Math. Soc. New, 50,(2019), 1029-1047.

S.G. Somko, A.A. Kilbas and O.I. Marichev, Fractional Integral and Derivative Theory and Application, Gordon and Breach, Yverdon, Switzerland, 1993.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Asha B. Nale, Satish K. Panchal, and Vaijanath L. Chinchane. “Certain Fractional Integral Inequalities Using Generalized Katugampola Fractional Integral Operator”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 809-14, doi:10.26637/MJM0803/0013.