\(M\)-Fuzzy hyponormal operators
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0014Abstract
In this paper, We introduce the definition of M-fuzzy hyponormal operator and also explored about some important properties of M-Fuzzy hyponormal operator from Fuzzy hyponormal operators in fuzzy Hilbert space. For a fuzzy continuous linear operator $\mathcal{T}$ on a Fuzzy Hilbert space $\mathcal{H}$ there exists a real number $\mathrm{M} \ni$ if $\left\|(\mathcal{T}-z I)^* u\right\| \leq \mathrm{M}\|(\mathcal{T}-z I) u\|$ for all $u \in \mathcal{H}$ and for all $z \in \mathrm{C}$ (field of complex numbers). We have given some definitions which are related to M-fuzzy hyponormal operator in fuzzy Hilbert space.
Keywords:
Adjoint fuzzy operator, Fuzzy Hilbert space(FH-space), Fuzzy Hyponormal operator, Fuzzy Normal operator, M-Fuzzy Hyponormal operator (MFHO), Self-Adjoint fuzzy operatorMathematics Subject Classification:
Mathematics- Pages: 815-821
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
A.Radharamani, A.Brindha, Fuzzy hyponormal operator in Fuzzy Hilbert space, International Journal of Mathematical Archive, 10(1)(2019), 6-12.
A. Radharamani, A. Brindha, S. Maheswari, Fuzzy Normal Operator in fuzzy Hilbert space and its properties, IOSR Journal of Engineering, 8(7)(2018), 1-6.
Sudad.M. Rasheed, Self-adjoint Fuzzy Operator in Fuzzy Hilbert Space and its Properties, Journal of Zankoy Sulaimani, 19(1)(2017), 233-238.
K.Katsaras, Fuzzy topological vector space-II, Fuzzy Sets and Systems, 12(1984), 143-154.
C.Felbin, Finite dimensional Fuzzy normed linear space, Fuzzy Sets and Systems, 48(1992), 239-248.
J.K.Kohil and R.Kumar, On Fuzzy Inner Product Spaces and Fuzzy Co- Inner Product Spaces, Fuzzy sets and system, Bull Calcutta Math. Soc., 53(1993), 227-232.
J.K.Kohil and R.Kumar, Linear mappings, Fuzzy linear spaces, Fuzzy inner product spaces and Fuzzy Co- inner product spaces, Bull Calcutta Math. Soc., 87(1995), 237246.
M.Goudarzi and S.M.Vaezpour, On the definition of Fuzzy Hilbert spaces and its Applications, J. Nonlinear Sci. Appl, 2(1)(2009), 46-59.
P.Majumdar and S.K.Samanta, On Fuzzy inner product spaces, J.Fuzzy Math., 16(2)(2008), 377-392.
R.Biswas, Fuzzy inner product spaces and Fuzzy norm functions, Information Sciences, 53(1991), 185-190.
R.Saadati and S.M.Vaezpoor, Some results on fuzzy Banach spaces, J. Appl. Math. and Computing, 17(1)(2005), 475-488.
T.Bag, S.K.Samanta, Operators Fuzzy Norm and some properties Fuzzy, Inf. Eng., 7(2015), 151-164.
Yongfusu. Riesz Theorem in probabilistic inner product spaces, Inter. Math. Forum, 2(62)(2007), 3073-3078.
T.Bag, S.K.Samanta, Finite Dimensional fuzzy normed linear spaces, J.Fuzzy Math, 11(3)(2003), 687-705.
Noori F.AI- Mayahi, Abbas M.Abbas, Some Properties of Spectral Theory in Fuzzy Hilbert Spaces, Journal of AL-Qadisiyah for Computer Science and Mathematics, 8(2)(2016), 1-7.
V.Istratescu, On Some Hyponormal Operators, Pacific Journal of Mathematics, 22(3)(1967), 413-417.
Wadhwa,B.L.M- hyponormal operators, Duke Maththematical Journal , 41(1974), 65-600.
A. Radharamani, A. Brindha,On some fuzzy hyponormal operators, Malaya Journal of Matematik, 7( 4)(2019), 607-611.
- NA
Similar Articles
- Jenifer Arulmani, On a subclass of bi-univalent functions related to shell-like curves connected with Fibonacci number , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.