\(M\)-Fuzzy hyponormal operators

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0014

Abstract

In this paper, We introduce the definition of M-fuzzy hyponormal operator and also explored about some important properties of M-Fuzzy hyponormal operator from Fuzzy hyponormal operators in fuzzy Hilbert space. For a fuzzy continuous linear operator $\mathcal{T}$ on a Fuzzy Hilbert space $\mathcal{H}$ there exists a real number $\mathrm{M} \ni$ if $\left\|(\mathcal{T}-z I)^* u\right\| \leq \mathrm{M}\|(\mathcal{T}-z I) u\|$ for all $u \in \mathcal{H}$ and for all $z \in \mathrm{C}$ (field of complex numbers). We have given some definitions which are related to M-fuzzy hyponormal operator in fuzzy Hilbert space.

Keywords:

Adjoint fuzzy operator, Fuzzy Hilbert space(FH-space), Fuzzy Hyponormal operator, Fuzzy Normal operator, M-Fuzzy Hyponormal operator (MFHO), Self-Adjoint fuzzy operator

Mathematics Subject Classification:

Mathematics
  • A. Radharamani Department of Mathematics, Chikkanna Government Arts College, Tirupur-641602, Tamil Nadu, India.
  • A. Brindha Department of Mathematics, Tiruppur Kumaran College for Women, Tirupur-641687, Tamil Nadu, India.
  • Pages: 815-821
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

A.Radharamani, A.Brindha, Fuzzy hyponormal operator in Fuzzy Hilbert space, International Journal of Mathematical Archive, 10(1)(2019), 6-12.

A. Radharamani, A. Brindha, S. Maheswari, Fuzzy Normal Operator in fuzzy Hilbert space and its properties, IOSR Journal of Engineering, 8(7)(2018), 1-6.

Sudad.M. Rasheed, Self-adjoint Fuzzy Operator in Fuzzy Hilbert Space and its Properties, Journal of Zankoy Sulaimani, 19(1)(2017), 233-238.

K.Katsaras, Fuzzy topological vector space-II, Fuzzy Sets and Systems, 12(1984), 143-154.

C.Felbin, Finite dimensional Fuzzy normed linear space, Fuzzy Sets and Systems, 48(1992), 239-248.

J.K.Kohil and R.Kumar, On Fuzzy Inner Product Spaces and Fuzzy Co- Inner Product Spaces, Fuzzy sets and system, Bull Calcutta Math. Soc., 53(1993), 227-232.

J.K.Kohil and R.Kumar, Linear mappings, Fuzzy linear spaces, Fuzzy inner product spaces and Fuzzy Co- inner product spaces, Bull Calcutta Math. Soc., 87(1995), 237246.

M.Goudarzi and S.M.Vaezpour, On the definition of Fuzzy Hilbert spaces and its Applications, J. Nonlinear Sci. Appl, 2(1)(2009), 46-59.

P.Majumdar and S.K.Samanta, On Fuzzy inner product spaces, J.Fuzzy Math., 16(2)(2008), 377-392.

R.Biswas, Fuzzy inner product spaces and Fuzzy norm functions, Information Sciences, 53(1991), 185-190.

R.Saadati and S.M.Vaezpoor, Some results on fuzzy Banach spaces, J. Appl. Math. and Computing, 17(1)(2005), 475-488.

T.Bag, S.K.Samanta, Operators Fuzzy Norm and some properties Fuzzy, Inf. Eng., 7(2015), 151-164.

Yongfusu. Riesz Theorem in probabilistic inner product spaces, Inter. Math. Forum, 2(62)(2007), 3073-3078.

T.Bag, S.K.Samanta, Finite Dimensional fuzzy normed linear spaces, J.Fuzzy Math, 11(3)(2003), 687-705.

Noori F.AI- Mayahi, Abbas M.Abbas, Some Properties of Spectral Theory in Fuzzy Hilbert Spaces, Journal of AL-Qadisiyah for Computer Science and Mathematics, 8(2)(2016), 1-7.

V.Istratescu, On Some Hyponormal Operators, Pacific Journal of Mathematics, 22(3)(1967), 413-417.

Wadhwa,B.L.M- hyponormal operators, Duke Maththematical Journal , 41(1974), 65-600.

A. Radharamani, A. Brindha,On some fuzzy hyponormal operators, Malaya Journal of Matematik, 7( 4)(2019), 607-611.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

A. Radharamani, and A. Brindha. “\(M\)-Fuzzy Hyponormal Operators”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 815-21, doi:10.26637/MJM0803/0014.