\(\beta_\lambda\)-closed spaces
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0015Abstract
We introduce and study \(\beta_\lambda\)-closed spaces in generalized topological spaces (GTS) as a generalization of \(\beta\)-closed spaces [2] in topological spaces. Several characterizations and mapping properties of such spaces are obtained.
Keywords:
Generalized topology, \(beta_\lambda-\theta \) -converge, \(\lambda\)-space, \(\lambda -\beta\)-open , \(\lambda - \beta\)-regular, \(\lambda-\beta-\theta\)-open, \(\beta_\lambda\)-closed, \(\beta_\lambda-\theta\)-accumulate, \(\beta_\lambda-\theta\)-c.a.p , \(\lambda-\beta-\theta\)-openMathematics Subject Classification:
Mathematics- Pages: 822-826
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
M. E. Abd El Monsef, S. N. El-Deeb and R. A. Mahmoud, $beta$-open sets and $beta$-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1), (1983), 77-90.
C. K. Basu and M. K. Ghosh, $beta$-closed spaces and $beta$ $theta$-subclosed graphs, European Jour. Pure Appl. Math., 1(2008), 40-50.
C. K. Basu and M. K. Ghosh, Locally $beta$-closed spaces, European Jour. Pure Appl. Math., 2(1)(2009), 85-96.
Á. Császár, Generalized open sets, Acta Math. Hungar., 75(1-2)(1997), 65-87.
Á. Császár, On the $gamma$-interior and $gamma$-closure of set, Acta Math. Hungar., 80 (1-2)(1998), 89-93.
Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (4) (2002), 351-357.
Á. Császár, Separation axioms for generalized topologies, Acta Math. Hungar., 104(1-2) (2004), 63-69.
Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2)(2005), 53-66.
Á. Császár, Further remarks on the formula for $gamma$-interior, Acta Math. Hungar. 113(4)(2006), 325-328.
Á. Császár, Remarks on quasi topologies, Acta Math. Hungar., 119(2008), 197-200.
J. Dugundji, Topology, Allyn and Bacon, Boston, Mass, 1966.
R. Engelking, General Topology, Second edition, Sigma series in pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
M. K. Ghosh and C. K. Basu, Generalized connectedness on generalized topologies, Jour. Adv. Research in Appl. Math., 6(3)(2014), 23-34.
T. Noiri, Unified characterizations for modifications of $R_0$ and $R_1$ topological spaces, Rend. Circ. Mat. Palermo, $55(2)(2006), 29-42$.
Bishwamber Roy and S. Jafari, On covering properties via generalized open sets, Annales Universitatis Scientiarum, $55(2012), 57-65$.
Mohammad S. Sarsak, On $mu$-compact sets in $mu$-spaces, Questions and Answers in General Topology, 31(2013), $49-57$
Mohammad S. Sarsak, Weakly $mu$-compact spaces, Demonstratio Mathematica, XLV (4), (2012), 929-938.
Mohammad S. Sarsak, $mu$-S-closed spaces, Acta Math. Hungarica, 146 (2)(2015), 285-299.
- NA
Similar Articles
- Asha B. Nale, Satish K. Panchal, Vaijanath L. Chinchane, Certain fractional integral inequalities using generalized Katugampola fractional integral operator , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.