\(\beta_\lambda\)-closed spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0015

Abstract

We introduce and study \(\beta_\lambda\)-closed spaces in generalized topological spaces (GTS) as a generalization of \(\beta\)-closed spaces [2] in topological spaces. Several characterizations and mapping properties of such spaces are obtained.

Keywords:

Generalized topology, \(beta_\lambda-\theta \) -converge, \(\lambda\)-space, \(\lambda -\beta\)-open , \(\lambda - \beta\)-regular, \(\lambda-\beta-\theta\)-open, \(\beta_\lambda\)-closed, \(\beta_\lambda-\theta\)-accumulate, \(\beta_\lambda-\theta\)-c.a.p , \(\lambda-\beta-\theta\)-open

Mathematics Subject Classification:

Mathematics
  • M. K. Ghosh Department of Mathematics, Kalyani Mahavidyalaya, Kalyani-741235, Nadia, West Bengal, India.
  • Pages: 822-826
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

M. E. Abd El Monsef, S. N. El-Deeb and R. A. Mahmoud, $beta$-open sets and $beta$-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1), (1983), 77-90.

C. K. Basu and M. K. Ghosh, $beta$-closed spaces and $beta$ $theta$-subclosed graphs, European Jour. Pure Appl. Math., 1(2008), 40-50.

C. K. Basu and M. K. Ghosh, Locally $beta$-closed spaces, European Jour. Pure Appl. Math., 2(1)(2009), 85-96.

Á. Császár, Generalized open sets, Acta Math. Hungar., 75(1-2)(1997), 65-87.

Á. Császár, On the $gamma$-interior and $gamma$-closure of set, Acta Math. Hungar., 80 (1-2)(1998), 89-93.

Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (4) (2002), 351-357.

Á. Császár, Separation axioms for generalized topologies, Acta Math. Hungar., 104(1-2) (2004), 63-69.

Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2)(2005), 53-66.

Á. Császár, Further remarks on the formula for $gamma$-interior, Acta Math. Hungar. 113(4)(2006), 325-328.

Á. Császár, Remarks on quasi topologies, Acta Math. Hungar., 119(2008), 197-200.

J. Dugundji, Topology, Allyn and Bacon, Boston, Mass, 1966.

R. Engelking, General Topology, Second edition, Sigma series in pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.

M. K. Ghosh and C. K. Basu, Generalized connectedness on generalized topologies, Jour. Adv. Research in Appl. Math., 6(3)(2014), 23-34.

T. Noiri, Unified characterizations for modifications of $R_0$ and $R_1$ topological spaces, Rend. Circ. Mat. Palermo, $55(2)(2006), 29-42$.

Bishwamber Roy and S. Jafari, On covering properties via generalized open sets, Annales Universitatis Scientiarum, $55(2012), 57-65$.

Mohammad S. Sarsak, On $mu$-compact sets in $mu$-spaces, Questions and Answers in General Topology, 31(2013), $49-57$

Mohammad S. Sarsak, Weakly $mu$-compact spaces, Demonstratio Mathematica, XLV (4), (2012), 929-938.

Mohammad S. Sarsak, $mu$-S-closed spaces, Acta Math. Hungarica, 146 (2)(2015), 285-299.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

M. K. Ghosh. “\(\beta_\lambda\)-Closed Spaces”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 822-6, doi:10.26637/MJM0803/0015.