Existence of solutions to discrete boundary value problem of fractional difference equations

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0017

Abstract

In this paper, we obtained the sufficient conditions for the existence of solutions to the discrete boundary value problems of fractional difference equation depending on parameters. We use Krasnosel'skii fixed point theorem to establish the existence results.

Keywords:

Fractional difference equation, fixed point theorem, existence, boundary value problem

Mathematics Subject Classification:

Mathematics
  • Pages: 832-837
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

R. P. Agarwal, M. Meehan, and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, UK, 2001.

F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equ., 2(2) (2007), 165-176.

F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc., 137(3) $(2009), 981-989$.

F. M. Atici and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl., 17(4) (2011), 445-456.

F. M. Atici and S. Sengul, Modeling with fractional difference equations, J. Math. Anal. Appl., 369(1) (2010), $1-9$.

H. Chen, Y. Cui, X. Zhao, Multiple solutions to fractional difference boundary value problems, Abstr. Appl. Anal., article 879380, (2014).

J. B. Diaz, T. J. Osler, Differences of fractional order, Math. Comp., 28 (1974), 185-202.

C. S. Goodrich, Continuity of solutions to discrete fractional initial value problems, Comput. Math. Appl., 59(11) (2010), 3489-3499.

C. S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl., 18(3) (2012), 397-415.

C. S. Goodrich, Some new existence results for fractional difference equations, Int. J. Dyn. Syst. Differ. Equ., 3(1-2) (2011), 145-162.

C. S. Goodrich, Existence of a positive solution to a system of discrete fractional boundary value problems, Appl. Math. Comput., 217 (2011), 4740-4753.

C. S. Goodrich, A. C. Peterson, Discrete Fractional Calculus, Springer International Publishing, (2015), doi: 10.1007/978-3-319-25562-0.

H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math. Comp., 50(182) (1988), 513529.

M. Holm, Sum and difference compositions in discrete fractional calculus, Cubo, 13(3) (2011), 153-184.

S. Kang, X. Zhao, H. Chen, Positive solutions for boundary value problems of fractional difference equations depending on parameters, Adv. Difference Equ., Article $376(2013)$.

S. Kang, Y. Li, H. Chen, Positive solutions for boundary value problems of fractional difference equations with nonlocal conditions, Adv. Difference Equ., Article 7 $(2014)$

${ }^{[17]}$ D. B. Pachpatte, A. S. Bagwan and A. D. Khandagale, Existence of some Positive solutions to fractional difference equations, Int. J. Difference Equ., 10(2) (2015), 221-232.

J. Wang, H. Xiang, F. Chen, Existence of positive solutions for a discrete fractional boundary value problem, Adv. Difference Equ., Article 253 (2014).

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Deepak B. Pachpatte, Arif S. Bagwan, and Amol D. Khandagale. “Existence of Solutions to Discrete Boundary Value Problem of Fractional Difference Equations”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 832-7, doi:10.26637/MJM0803/0017.