Existence of solutions to discrete boundary value problem of fractional difference equations
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0017Abstract
In this paper, we obtained the sufficient conditions for the existence of solutions to the discrete boundary value problems of fractional difference equation depending on parameters. We use Krasnosel'skii fixed point theorem to establish the existence results.
Keywords:
Fractional difference equation, fixed point theorem, existence, boundary value problemMathematics Subject Classification:
Mathematics- Pages: 832-837
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
R. P. Agarwal, M. Meehan, and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, UK, 2001.
F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equ., 2(2) (2007), 165-176.
F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc., 137(3) $(2009), 981-989$.
F. M. Atici and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl., 17(4) (2011), 445-456.
F. M. Atici and S. Sengul, Modeling with fractional difference equations, J. Math. Anal. Appl., 369(1) (2010), $1-9$.
H. Chen, Y. Cui, X. Zhao, Multiple solutions to fractional difference boundary value problems, Abstr. Appl. Anal., article 879380, (2014).
J. B. Diaz, T. J. Osler, Differences of fractional order, Math. Comp., 28 (1974), 185-202.
C. S. Goodrich, Continuity of solutions to discrete fractional initial value problems, Comput. Math. Appl., 59(11) (2010), 3489-3499.
C. S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl., 18(3) (2012), 397-415.
C. S. Goodrich, Some new existence results for fractional difference equations, Int. J. Dyn. Syst. Differ. Equ., 3(1-2) (2011), 145-162.
C. S. Goodrich, Existence of a positive solution to a system of discrete fractional boundary value problems, Appl. Math. Comput., 217 (2011), 4740-4753.
C. S. Goodrich, A. C. Peterson, Discrete Fractional Calculus, Springer International Publishing, (2015), doi: 10.1007/978-3-319-25562-0.
H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math. Comp., 50(182) (1988), 513529.
M. Holm, Sum and difference compositions in discrete fractional calculus, Cubo, 13(3) (2011), 153-184.
S. Kang, X. Zhao, H. Chen, Positive solutions for boundary value problems of fractional difference equations depending on parameters, Adv. Difference Equ., Article $376(2013)$.
S. Kang, Y. Li, H. Chen, Positive solutions for boundary value problems of fractional difference equations with nonlocal conditions, Adv. Difference Equ., Article 7 $(2014)$
${ }^{[17]}$ D. B. Pachpatte, A. S. Bagwan and A. D. Khandagale, Existence of some Positive solutions to fractional difference equations, Int. J. Difference Equ., 10(2) (2015), 221-232.
J. Wang, H. Xiang, F. Chen, Existence of positive solutions for a discrete fractional boundary value problem, Adv. Difference Equ., Article 253 (2014).
- NA
Similar Articles
- M. K. Ghosh, \(\beta_\lambda\)-closed spaces , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.