A study on various soft nano continuous functions and soft nano homeomorphism

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0033

Abstract

Some interesting properties of soft nano \(g \omega\)-continuous functions are discussed and provided with the counter examples. Soft nano \(g \omega\)-irresolute continuous functions are studied along with their characterization. Specially, we establish some notable results pertaining to soft nano perfectly continuous functions, soft nano strongly continuous functions. Soft nano \(g \omega\)-homeomorphism is defined and its subclass soft nano \((g \omega)^*\)-homeomorphism is studied.

Keywords:

Soft nano $ g omega $mid- continuous, soft nano $ g omega $-irresolute, soft nano perfectly continuous, soft nano strongly continuous, soft nano $g omega 4-homeomorphism, soft nano $(g omega)^* $-homeomorphism.

Mathematics Subject Classification:

Mathematics
  • Pages: 924-929
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

S.S. Benchalli, P. G. Patil, N.S. Kabbur and J.Pradeepkumar, Weaker forms of soft nano open sets, J.Comput. Math. Sci., 8(11)(2017), 589-599.

K. Bhuvaneswari, A. Ezhilarasi, Nano semi-generalized continuous maps in nano topological spaces, Int. Res. J. Pure and Algebra, 5(9)(2015), 149-155.

K.Bhuvaneswari and K.MythiliGnanapriya, Nano generalized-pre homeomorphisms in nano topological Spaces, Int. J. Sci. Res. Publications, 6(7)(2016), 526530.

M. Bhuvaneswari and N. Nagaveni, A Weaker form of contra continuous function in nano topological spaces, Annals Pure and Appl. Math., 16(1)(2018), 141-150.

M. Bhuvaneswari and N. Nagaveni, A Study on contra NWG-closed and NWG-open maps, Int. J. Appl. Res., $4(4)(2018), 124-128$.

M. Caldas and S. Jafari, Some properties of contra$beta$-continuous functions, Mem. Fac Sci. Kochi Univ., 22(2001), 19-28.

A. Dhanis Arul Mary and I. Arockiarani, On nano gbclosed sets in nano topological spaces, Int. J. Math. Achieve, 6(2)(2015), 54-58.

J. Dontchev, Contra continuous functions and strongly-S closed spaces, Int. J. Math. Math. Sci., 19(1996), 303310.

M. K. Ghosh, Separation axioms and graphs of functions in nano topological spaces via nano $beta$-open sets, Annals Pure and Appl. Math., 14(2)(2017), 213-223.

A. Jayalakshmi and C. Janaki, A new form of nano locally closed sets in nano topological spaces, Global J. Pure and Appl. Math., 13(9)(2017), 5997-6006.

M. Mohammed, Khalaf and Kamal N. Nimer, Nano Psopen sets and Ps-continuity, Int. J. Contemp. Math. Sci., $10(1)(2015), 1-11$.

D. Molodtsov, Soft set theory first results, Comp. Math. Appl., 37(1999), 19-31.

N. Nagaveni and M. Bhuvaneswari, On nano weakly generalized continuous functions, Int. J. Emerg. Res. Managt. Tech., 6(4)(2017), 95-100.

A. Nasef, A. I. Aggour and S. M. Darwesh, On some classes of nearly open sets in nano topological spaces, $J$. Egypt. Math. Soc., 24(4)(2016), 585-589.

M. Parimala, R. Jeevitha and R. Udhayakumar, Nano contra $alpha xi$ continuous and nano contra $alpha psi$ irresolute in nano topology, Global J. Eng. Sci. Res., 5(9)(2018), 64 71.

P. G. Patil and Spoorti S. Benakanawari, On Soft nano resolvable spaces and soft nano irresolvable spaces in soft nano topological spaces, J. of Compt. Math. Sci., 10 (2)(2019), 245-254.

P. G. Patil and Spoorti S. Benakanawari, New aspects of closed sets in soft nano topological spaces (Communicated).

Qays Hatem Imran, Murtadha M. Abdulkadhim and Mustafa H. Hadi, On nano generalized alpha generalized closed sets in nano topological spaces, Gen. Math. Notes, 34(2)(2016), 39-51.

K. Rajalakshmi, C. Vignesh Kumar, V. Rajendran and P. Sathishmohan, Note on contra nano semipre continuous functions, Indian J. Sci. Tech., 12(16)(2019), 1-3.

M. Shabir and M.Naz., On soft topological spaces, Comp. Math. Appl., 61(2011), 1786-1799.

P. Sundaram, Studies on Generalizations of Continuous Maps in Topological Spaces, Ph. D., Thesis, Bharathiar University, Coimbatore, 1991.

M. L. Thivagar and Carmel Richard, On nano continuity, Math. Theory and Modeling, 3(7)(2013), 32-37.

$[23]$ M. L. Thivagar, Saeid Jafari and V. Sutha Devi, On new class of contra continuity in nano topology, Italian J. Pure and Appl. Math., 41(2017), 1-10.

G. Vasantha Kannan and K. Indirani, Nano regular generalized star star b-homeomorphism and contra nano regular generalized star star b-continuous in nano topological spaces, Int. J. Math. Arch., 9(6)(2018), 75-81.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

P. G. Patil, and Spoorti S. Benakanawari. “A Study on Various Soft Nano Continuous Functions and Soft Nano Homeomorphism”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 924-9, doi:10.26637/MJM0803/0033.