\(V_k\)-Super vertex magic graceful labeling of graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0037

Abstract

Let $G$ be a finite and simple $(p, q)$ graph. An one-one onto function $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ is called $V$ super vertex magic graceful labeling if $f(V(G))=\{1,2,3, \ldots, p\}$ and for any vertex $v \in V(G), \sum_{u \in N(v)} f(u v)-f(v)=M$, where $M$ is a whole number. For an integer $k \geq 1$, let $E_k(v)=\{e \in E(G)$ : the distance between $e$ from $v$ is less than or equal to $k$. For $v \in V(G)$, we define $w_k(v)=\sum_{e \in E_k(v)} f(e)$. A $V_k$-super vertex magic graceful labeling $\left(V_k\right.$-SVMGL) is a one-one function $f$ from $V(G) \cup E(G)$ onto the set $\{1,2,3, \ldots, p+q\}$ such that $f(V(G))=\{1,2,3, \ldots, p\}$ and for any element $v \in V(G)$, we have $w_k(v)-f(v)=M$, where $M$ is a whole number. In this paper, we study several properties of $V_k$-SVMGL and we identify an equivalent condition for the $E_k$-regular graphs which admits $V_k$-SVMGL. At last we identify some families of graphs which admit $V_2$-SVMGL.

Keywords:

circulant graphs, \(V_k\) -super vertex magic graceful labeling , \(E_k\) -regular graphs , \(V\)-super vertex magic graceful labeling

Mathematics Subject Classification:

Mathematics
  • Sivagnanam Mutharasu Department of Mathematics, C. B. M. College, Coimbatore-641042, Tamil Nadu, India.i
  • Mary Bernard Department of Mathematics, TDMNS College, T. Kallikulam-627113, Tamil Nadu, India.
  • Duraisamy Kumar Department of Science and Humanities, RVS Technical Campus, Coimbatore-641402, Tamil Nadu, India.
  • Pages: 950-954
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

J.A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin., (1997) and Edited (2017) #DS6.

S. W. Golomb, How to Number a Graph, in Graph Theory and Computing, R. C. Road, ed., Academic Press, New York, 23-37 (1972).

J.A. MacDougall, M. Miller and K.A. Sugeng, Super vertex-magic total labelings of graphs, Proceedings of the 15 th Australian Workshop on Combinatorial Algorithms, (2004), 222-229.

G. Marimuthu and M. Balakrishnan, $E$-super vertex magic labeling of graphs, Discrete Appl. Math., 160(2012), 1766-1774.

A. Rosa, On Certain Valuations of the Vertices of a Graph, Theory of Graphs, Inter. Nat. Sym. Rome, Italy, (1966).

J. Sedlacek, On magic graphs, Math. Slov., 26(1976), 329-335.

SivagnanamMutharasu and Duraisamy Kumar, $E_k$-Super vertex magic labeling of graphs, Int. J. Math. And Appl., 6(1-E)(2018), 1005-1012.

SivagnanamMutharasu and Duraisamy Kumar, $V_k$-Super vertex magic labeling of graphs, Malaya Journal of Matematik, 6(4)92018), 795-799.

SivagnanamMutharasua and N. Mary Bernard, V Super Vertex-Magic Graceful Labeling in Graphs, International Journal of Control Theory and Applications, 10 (36)(2017), 307-315.

V. Swaminathan and P. Jeyanthi, Super vertex - magic labeling, Indian J. Pure Appl. Math., 34(6)(2003), 935939.

W. Stein, Elementary Number Theory, 2011.

B.M. Stewart, Magic graphs, Can. J. Math., 18(1966), 1031-1059.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Sivagnanam Mutharasu, Mary Bernard, and Duraisamy Kumar. “\(V_k\)-Super Vertex Magic Graceful Labeling of Graphs”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 950-4, doi:10.26637/MJM0803/0037.