\(V_k\)-Super vertex magic graceful labeling of graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0037Abstract
Let $G$ be a finite and simple $(p, q)$ graph. An one-one onto function $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ is called $V$ super vertex magic graceful labeling if $f(V(G))=\{1,2,3, \ldots, p\}$ and for any vertex $v \in V(G), \sum_{u \in N(v)} f(u v)-f(v)=M$, where $M$ is a whole number. For an integer $k \geq 1$, let $E_k(v)=\{e \in E(G)$ : the distance between $e$ from $v$ is less than or equal to $k$. For $v \in V(G)$, we define $w_k(v)=\sum_{e \in E_k(v)} f(e)$. A $V_k$-super vertex magic graceful labeling $\left(V_k\right.$-SVMGL) is a one-one function $f$ from $V(G) \cup E(G)$ onto the set $\{1,2,3, \ldots, p+q\}$ such that $f(V(G))=\{1,2,3, \ldots, p\}$ and for any element $v \in V(G)$, we have $w_k(v)-f(v)=M$, where $M$ is a whole number. In this paper, we study several properties of $V_k$-SVMGL and we identify an equivalent condition for the $E_k$-regular graphs which admits $V_k$-SVMGL. At last we identify some families of graphs which admit $V_2$-SVMGL.
Keywords:
circulant graphs, \(V_k\) -super vertex magic graceful labeling , \(E_k\) -regular graphs , \(V\)-super vertex magic graceful labelingMathematics Subject Classification:
Mathematics- Pages: 950-954
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
J.A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin., (1997) and Edited (2017) #DS6.
S. W. Golomb, How to Number a Graph, in Graph Theory and Computing, R. C. Road, ed., Academic Press, New York, 23-37 (1972).
J.A. MacDougall, M. Miller and K.A. Sugeng, Super vertex-magic total labelings of graphs, Proceedings of the 15 th Australian Workshop on Combinatorial Algorithms, (2004), 222-229.
G. Marimuthu and M. Balakrishnan, $E$-super vertex magic labeling of graphs, Discrete Appl. Math., 160(2012), 1766-1774.
A. Rosa, On Certain Valuations of the Vertices of a Graph, Theory of Graphs, Inter. Nat. Sym. Rome, Italy, (1966).
J. Sedlacek, On magic graphs, Math. Slov., 26(1976), 329-335.
SivagnanamMutharasu and Duraisamy Kumar, $E_k$-Super vertex magic labeling of graphs, Int. J. Math. And Appl., 6(1-E)(2018), 1005-1012.
SivagnanamMutharasu and Duraisamy Kumar, $V_k$-Super vertex magic labeling of graphs, Malaya Journal of Matematik, 6(4)92018), 795-799.
SivagnanamMutharasua and N. Mary Bernard, V Super Vertex-Magic Graceful Labeling in Graphs, International Journal of Control Theory and Applications, 10 (36)(2017), 307-315.
V. Swaminathan and P. Jeyanthi, Super vertex - magic labeling, Indian J. Pure Appl. Math., 34(6)(2003), 935939.
W. Stein, Elementary Number Theory, 2011.
B.M. Stewart, Magic graphs, Can. J. Math., 18(1966), 1031-1059.
- NA
Similar Articles
- Lyes Ait-Amrane, Djilali Behloul, Cassini determinant involving the \((a;b)\)-hyper-Fibonacci numbers , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.