Convergence of \(L\)-fuzzy nets via bitopological semiopen sets
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0051Abstract
In this paper, we introduce the concept of an \((i, j)\)-semi-remote neighbourhood of fuzzy points and establish the Moore-Smith \((i, j)\)-semi-convergence theory of \(L\)-fuzzy nets.
Keywords:
Fuzzy \((i; j)\)-semi-closed sets , fuzzy \((i; j)\)-semi-open sets, \((i; j)\)-semi-remote neighoburhood , \((i; j\))-semiconvergenceMathematics Subject Classification:
Mathematics- Pages: 1031-1036
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
B. Chen, $alpha$-generalized convergence theory of L-fuzzy nets and its applications, Italian J. Pure Appl. Math., 27 (2010), 167-178.
R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), 621-633.
A. A. Nour and N. Seyam, HC-Convergence theory of L-fuzzy nets and L-fuzzy ideals and its applications, The Arabian Journal for Science and Engineering, 30 (2005), 317-334
A. A. Nour, On convergence theory in fuzzy topological spaces and its applications, Czechoslovak Mathematical Journal, 55 (2005), 295-316.
P. P. Ming and L.Y. Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy poing and Moore-simith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
S.S. Thakur and R.Malviya, Semi-open sets and semicontinuity in fuzzy bitopological spaces, Fuzzy Sets and Systems, 79(2)(1996), 251-256.
G. J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl., 94 (1983), 59-67.
G. J. Wang, Theory of Topological Molecular Lattices, Fuzzy Sets and Systems, 47 (1992), 351-376.
L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.