On faintly \(b-\mathscr{I}\)-continuous multifunctions

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0053

Abstract

The aim of this paper is to introduce and study upper and lower faintly \(b-\mathscr{I}\)-continuous multifunctions as a generalization of upper and lower \(b-\mathscr{I}\)-continuous multifunctions, respectively.

Keywords:

Ideal topological spaces, \(b-\mathscr{I}\)-open sets , \(b-\mathscr{I}\)-open sets, \(b-\mathscr{I}\)-closed sets, faintly \(b-\mathscr{I}\)-continuous multifunctions

Mathematics Subject Classification:

Mathematics
  • M. Sebasti Jeya Pushpam Department of Mathematics, Auxilium college of Arts and Science for Women (Affiliated to Bharathidasan University), Karambakudi-622302, Tamil Nadu, India.
  • N. Rajesh Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan University), Thanjavur-613005, Tamil Nadu, India.
  • Pages: 1041-1044
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

M. Akadag, On $b-mathscr{I}$-open sets and $b-mathscr{I}$-continuous functions, Internat. J. Math. Math. Sci., (2007), 1-13.

C. Berge, EspacesTopologiques Functions Multivoques, Paris, Dunod 1959.

T. Banzaru, Multifunctions and $M$-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.

P. GomathiSundari, N. Rajesh and R. Muthu Vijayalakshmi, On upper and lower $b-mathscr{I}$-continuous multifunctions, Aryabhatta Journal of Mathematics & Informatics, 11 (1) (2019) 87-90.

D. Jankovic and T. R. Hamlett, New Toplogies From Old Via Ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.

D. Jankovic and T. R. Hamlett, Compatible extension of ideals, Boll. U. M. I., 7(1992), 453-465.

K. Kuratowski, Topology, Academic Press, New York, 1966.

T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26(1993), 363-380.

T. Noiri and V. Popa, Slightly $m$-continuous multifunctions, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 1(4)(2006), 485-505.

T. Noiri and V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res. Ser. Math. Inform., $20(1)(2010), 185-214$.

T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstraio Math., 26(1993), 363-380.

V. Popa, A note on weakly and almost continuous multifunctions, Univ, u NovomSadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat., 21(1991), 31-38.

V. Popa, Weakly continuous multifunction, Boll. Un. Mat. Ital., (5) 15-A(1978), 379-388.

S. Sinharoy and S. Bandyopadhyay, On $theta$-completely regular and locally $theta-H$-closed spaces, Bull. Cal. Math. Soc., 87(1995), 19-26.

N. V. Velicko, $H$-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103-118.

R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.

  • NA

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

M. Sebasti Jeya Pushpam, and N. Rajesh. “On Faintly \(b-\mathscr{I}\)-Continuous Multifunctions”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1041-4, doi:10.26637/MJM0803/0053.