On Berezin radius inequalities via Cauchy-Schwarz type inequalities
Downloads
DOI:
https://doi.org/10.26637/mjm1102/002Abstract
The Berezin transform $\widetilde{A}$ and the Berezin radius of an operator$A$ on the reproducing kernel Hilbert space over some set $\Omega$ with the reproducing kernel $k_{\lambda}$ are defined, respectively, by \[ \widetilde{A}(\lambda)=\left\langle {A}\widehat{{k}}_{\lambda},\widehat{{k}% }_{\lambda}\right\rangle ,\ \lambda\in\Omega\text{ and }\mathrm{ber}% (A):=\sup_{\lambda\in\Omega}\left\vert \widetilde{A}{(\lambda)}\right\vert . \] We study some new inequalities by using this bounded function $\widetilde{A}, $ involving refinements of some Berezin radius inequalities for operators acting on the reproducing kernel Hilbert space.
Keywords:
Berezin symbol, Berezin radius, Cauchy-Schwarz inequality, triangle inequality, reproducing kernelMathematics Subject Classification:
General Mathematics- Pages: 127-141
- Date Published: 01-04-2023
- Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)
A. A BU -O MAR AND F. K ITTANEH , Upper and lower bounds for the numerical radius with an application
to involution operators, Rocky Mountain J. Math., 45(4) (2015), 1055-1064, https://doi.org/10.1216/RMJ-
-45-4-1055.
M.W. A LOWARI , Refinements of some numerical radius inequalities for Hilbert space operators, Linear
Multilinear Algebra, 69(7), (2021), 1208-1223, https://doi.org/10.1080/03081087.2019.1624682. DOI: https://doi.org/10.1080/03081087.2019.1624682
M.W. A LOWARI , On the generalized mixed Schwarz inequality, Proc. Inst. Math. Mech. Natl. Acad. Sci.
Azerb., 46(1) (2020), 3-15, https://doi.org/10.29228/proc.13. DOI: https://doi.org/10.29228/proc.13
M.W. A LOWARI , On Cauchy-Schwarz type inequalities and applications to numerical radius inequalities,
Ricerche Mat., (2022), https://doi.org/10.1007/s11587-022-00689-2. DOI: https://doi.org/10.1007/s11587-022-00689-2
J. A UJLA AND F. S ILVA , Weak majorization inequalities and convex functions, Linear Algebra Appl., 369
(2003), 217-233, https://doi.org/10.1016/S0024-3795(02)00720-6. DOI: https://doi.org/10.1016/S0024-3795(02)00720-6
M. B AKHERAD AND M.T. G ARAYEV , Berezin number inequalities for operators, Concr. Oper., 6(1) (2019),
-43, https://doi.org/10.1515/conop-2019-0003. DOI: https://doi.org/10.1515/conop-2019-0003
H. B AS ¸ ARAN AND M. G¨ URDAL , Berezin number inequalities via Young inequality, Honam Math. J., 43(3)
(2021), 523-537, https://doi.org/10.5831/HMJ.2021.43.3.523.
H. B AS ¸ ARAN , M. G¨ URDAL AND A.N. G¨ UNCAN , Some operator inequalities associated with Kantorovich
and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523-532,
https://doi.org/10.3906/mat-1811-10. DOI: https://doi.org/10.3906/mat-1811-10
H. B AS ¸ ARAN , M.B. H UBAN AND M. G¨ URDAL , Inequalities related to Berezin norm and Berezin number of operators, Bull. Math. Anal. Appl., 14(2) (2022), 1-11, https://doi.org/10.54671/bmaa-2022-2-1.
F.A. B EREZIN , Covariant and contravariant symbols for operators, Math. USSR-Izvestiya, 6 (1972), 1117-
, https://doi.org/10.1070/IM1972v006n05ABEH001913. DOI: https://doi.org/10.1070/IM1972v006n05ABEH001913
M.L. B UZANO , GeneralizzationedelladisuguaglianzadiCauchy-Schwarz, Rend.Semin.Mat.Univ.Politech.
Torino, 31(1971/73) (1974), 405-409.
I. C HALENDAR , E. F RICAIN , M. G¨ URDAL AND M.T. K ARAEV , Compactness and Berezin symbols, Acta. Sci.Math. (Szeged), 78 (2012), 315-329, https://doi.org/10.1007/BF03651352. DOI: https://doi.org/10.1007/BF03651352
S.S. D RAGOMIR , Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math., 5 (2009), 269-278.
M. E L -H ADDAD AND F. K ITTANEH , Numerical radius inequalities for Hilbert space operators. II., Studia
Math., 182(2) (2007), 133-140, https://doi.org/10.4064/sm182-2-3. DOI: https://doi.org/10.4064/sm182-2-3
T. F URUTA , H. M I ´ CI ´ C , J. P E ˇ CARI ´ C AND Y. S EO , Mond-Peˇ cari´ c Method in Operator Inequalities, Zagreb, Element, 2005.
M. G ARAYEV , F. B OUZEFFOUR , M. G¨ URDAL AND C.M. Y ANG ¨ OZ , Refinements of Kantorovich type,
Schwarz and Berezin number inequalities, Extracta Math., 35 (2020), 1-20, https://doi.org/10.17398/2605-
35.1.1.
M.T. G ARAYEV , M. G¨ URDAL AND A. O KUDAN , Hardy-Hilbert’s inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 19 (2016), 883-891, https://doi.org/10.7153/mia-19-64. DOI: https://doi.org/10.7153/mia-19-64
M.T. G ARAYEV , M. G¨ URDAL AND S. S ALTAN , Hardy type inequaltiy for reproducing kernel Hilbert space
operators and related problems, Positivity, 21 (2017), 1615-1623, https://doi.org/10.1007/s11117-017-0489- DOI: https://doi.org/10.1007/s11117-017-0489-6
M.T. G ARAYEV , H. G UEDRI , M. G¨ URDAL AND G.M. A LSAHLI , On some problems for operators
on the reproducing kernel Hilbert space, Linear Multilinear Algebra, 69(11) (2021), 2059-2077,
https://doi.org/10.1080/03081087.2019.1659220. DOI: https://doi.org/10.1080/03081087.2019.1659220
M. G¨ URDAL AND F. S¸OHRET , Some results for Toeplitz operators on the Bergman space, Appl. Math.
Comput., 218(3) (2011), 789-793, https://doi.org/10.1016/j.amc.2011.01.069. DOI: https://doi.org/10.1016/j.amc.2011.01.069
M. H AJMOHAMADI , R. L ASHKARIPOUR AND M. B AKHERAD , Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68(6) (2020), 1218-1229, https://doi.org/10.1080/03081087.2018.1538310. DOI: https://doi.org/10.1080/03081087.2018.1538310
M.B. H UBAN , H. B ASARAN AND M. G¨URDAL , New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3) (2021), 1-12.
M.B. H UBAN , H. B AS ¸ ARAN AND M. G¨ URDAL , Berezin number inequalities via convex functions, Filomat, 36(7) (2022), 2333-2344, https://doi.org/10.2298/FIL2207333H. DOI: https://doi.org/10.2298/FIL2207333H
M.B. H UBAN , H. B AS ¸ ARAN AND M. G¨ URDAL , Some new inequalities via Berezin numbers, Turk. J. Math. Comput. Sci., 14(1) (2022), 129-137, https://doi.org/10.47000/tjmcs.1014841. DOI: https://doi.org/10.47000/tjmcs.1014841
M.T. K ARAEV , Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct.
Anal., 238 (2006), 181-192, https://doi.org/10.1016/j.jfa.2006.04.030. DOI: https://doi.org/10.1016/j.jfa.2006.04.030
M.T. K ARAEV , Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018, https://doi.org/10.1007/s11785-012-0232-z. DOI: https://doi.org/10.1007/s11785-012-0232-z
T. K ATO , Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208-212,
https://doi.org/10.1007/BF01343117. DOI: https://doi.org/10.1007/BF01343117
F. K ITTANEH , A numerical radius inequality and an estimate for the numerical radius of the Frobenius
companion matrix, Studia Math., 158(1) (2003), 11-17, https://doi.org/10.4064/sm158-1-2. DOI: https://doi.org/10.4064/sm158-1-2
F. K ITTANEH , Numerical radius inequalities for Hilbert space operators, Studia Math., 168(1) (2005), 73–80, https://doi.org/10.4064/sm168-1-5. DOI: https://doi.org/10.4064/sm168-1-5
F. K ITTANEH AND H.R. M ORADI , Cauchy-Schwarz type inequalities and appplications to numerical radius inequalities, Math. Ineq. Appl., 23(3) (2020), 1117-1125, https://doi.org/10.7153/mia-2020-23-85. DOI: https://doi.org/10.7153/mia-2020-23-85
D.S. M ITRINOVI ´ C , J.E. P E ˇ CARI ´ C AND A.M. F INK , Classical and New Inequalities in Analysis, Kluwer
Academic Publishers, Dordrecht, 1993. https://doi.org/10.1007/978-94-017-1043-5. DOI: https://doi.org/10.1007/978-94-017-1043-5
R. T APDIGOGLU , New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices, 15(3) (2021), 1031-1043, https://doi.org/10.7153/oam-2021-15-64. DOI: https://doi.org/10.7153/oam-2021-15-64
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Verda Gurdal, Hamdullah Basaran
This work is licensed under a Creative Commons Attribution 4.0 International License.