On approximation of fixed point in Busemann space via generalized Picard normal \(s\)-iteration process

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0056

Abstract

This paper deals with strong as well as \(\Delta\)-convergence results for SKC map in Busemann space via generalized Picard normal \(s\)-iteration process. We design an example for the Suzuki-Karapinar conditioned mapping in this paper. Also we discuss generalized Picard normal \(s\)-iteration process is faster than some famous iteration processes. An numerical example is presented in this paper to support our result.

Keywords:

Busemann Space, strong convergence, SKC map, iteration method, \(\Delta\)-convergence

Mathematics Subject Classification:

Mathematics
  • Samir Dashputre Department of Mathematics, Government College, Arjunda, Balod- 491225, Chhattisgarh, India.
  • Padmavati Department of Mathematics, Government V.Y.T. Auto. P.G. College, Durg-491001, Chhattisgarh, India.
  • Kavita Sakure Department of Mathematics, Government Digvijay Auto. P.G. College, Rajnandgaon-491441, Chhattisgarh, India. https://orcid.org/0000-0002-6312-2924
  • Pages: 1055-1062
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

R. P. Agarwal, D. O'Regan and D. Sahu, Iterative construction of fixed points of nearly asymptotiallynonexpansive mappings, J. Convex Ana., 8 (1)(2007). 61-79.

B.H. Bowditch, Minkowskian subspaces of nonpositively curved metric spaces, Bull. London Math. Soc., 27(1995), 575-584.

H. Busemann, Spaces with nonpositive curvature, Acta. Math., 80(1948), 259-310.

J. A. Clarson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40(1936), 396-414.

T. Foertsch and A. Lytchak, Nonpositive curvature and the Ptolemy inequalities. Int. Math. Res. Not. IMRN, 22(2007), 1-10.

S. Dashputre, Padmavati, K. Sakure, Strong and $Delta$-convergence results for generalized nonexpansive

mapping in hyperbolic space. To Appears in Communications in Mathematics and Applications, 11(3)(2020), $1-10$.

T. Gelande, A. Karlsson and G. Margulis, Superrigidity, generalized harmonic maps and uniformly convex spaces. Geom. Funct. Anal., 17(2008), 1524-1550.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.

K. Goebel, S. Reich. Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker Inc. NY 1984.

M. Gromov. Hyperbolic Manifolds, Groups and Actions in Riemann Surfaces and Related Topics, Ann. Math. Studies, 97(1981), 183-215.

M. Imdad and S. Dashputre, Fixed point approximation of Picard normal s-iteration process for generalized nonexpansive mappings in Hyperbolic spaces, Mathematical Sciences, 10(3)(2016), 131-138.

S. Ishikawa. Fixed points by new iteration method, Proc. Am. Math. Soc., 149(1974), 147-150.

N. Kadioglu, I. Yildirim. Approximating fixed points of nonexpansive mappings by faster iteration process. $J$.

E. Karapinar and K. Tas. Generalized (C)-conditions and related fixed point theorems, Compt. Math. Appl., 61(2011), 3370-3380.

S.H. Khan, M. Abbas and T. Nazir. Existence and approximation results for SKC mappings in Busemann spaces, Waves Wavelets Fractals Adv. Ana., 3(2017), 48-56.

M.A. Krasnosl'skii, Two remarks on the method of successive approximation. Usp. Mat. Nauk. 10(1955), $123-127$.

L. Leustean, Nonexpansive iteration in uniformly convex W-hyperbolic space, Nonlinear Analysis and Optimization I. Nonlinear Analysis, 513(2010), 193-210.

T. C. Lim, Remarks on cone fixed point theorems, Proc. Amer. Math. Soc. 60(1976), 179-182.

W.R. Mann, Mean value methods in iterations. Proc. Am. Math. Soc., 4(1953), 506-510.

M.A. Noor, New approximation scheme for general rational inequalities, J. Math. Anal. Appl., 251(2000), 217-229.

I. Oppenheim, Fixed point theorems for reflexive Banach spaces and uniformly convex nonpositively curved metric spaces, Math. Z., 278(2014), 649-661.

A. Papadopoulos. Metric Spaces, Convexity and Nonpositive Curvature. IRMA Lectures in Mathematicsd and Theoretical Physics 6, European Mathematical Society, 2005.

S. Reich and I. Shafrir, Nonexpansive iterations in Hyperbolic spaces, Nonlinear Anal., 15(1990), 537-558.

D.R. Sahu, Application of the s-iteration process to constrained minimization problems and feasibility problems, Fixed Point Theory, 12(2011), 187-204.

H. Schaefer, Uber die methodesukzessiverapproxima-tion, Jber. Dtsch. Math. Ver., 59(1970), 131-140.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Samir Dashputre, Padmavati, and Kavita Sakure. “On Approximation of Fixed Point in Busemann Space via Generalized Picard Normal \(s\)-Iteration Process”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1055-62, doi:10.26637/MJM0803/0056.