On slightly \(b-\mathscr{I}\)-continuous multifunctions
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0058Abstract
In this paper, we introduce and study the concept of slightly \(b-\mathscr{I}\)-continuous multifunctions on ideal topological space.
Keywords:
Ideal topological spaces, \(b-\mathscr{I}\)-open sets, \(b-\mathscr{I}\)-closed sets, slightly \(b-\mathscr{I}\)-continuous multifunctions , \(b-\mathscr{I}\)-closed setsMathematics Subject Classification:
Mathematics- Pages: 1070-1073
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
M. Akadag, On $b-mathscr{I}$-open sets and $b-mathscr{I}$-continuous functions, Internat. J. Math. Math. Sci., (2007), 1-13.
R. Balaji and N. Rajesh, Some new separation axioms via $223-232$.
T. Banzaru, Multifunctions and $M$-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.
E. Ekici, Slightly continuous multifunctions, International J. Math. Sci., 4(1)(2005), 69-78.
E. Ekici, Generalization of perfectly continuous, Regular set-connected and clopen functions, Acta. Math. Hungarica, 107(3)(2005), 193-206.
P. GomathiSundari, N. Rajesh and R. Muthu Vijayalakshmi, On upper and lower $b-mathscr{I}$-continuous multifunctions, Aryabhatta Journal of Mathematics & Informatics, 11(1)(2019), 87-90.
D. Jankovic and T. R. Hamlett, New Toplogies From Old Via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295-310.
K. Kuratowski, Topology, Academic Press, New York, 1966.
T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26 (1993), 363-380.
T. Noiri and V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20(1) (2010), 185-214.
T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstraio Math., 26(1993), 363-380.
V. Popa, A note on weakly and almost continuous multifunctions, Univ, u NovomSadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat., 21(1991), 31-38.
V. Popa, Weakly continuous multifunction, Boll. Un. Mat. Ital., (5) 15-A(1978), 379-388.
R. Staum, The algebra of bounded continuous fuctions into a nonarchimedean field, Pacific J. Math., 50(1974), $169-185$.
R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- NA
Similar Articles
- Samir Dashputre, Padmavati, Kavita Sakure, On approximation of fixed point in Busemann space via generalized Picard normal \(s\)-iteration process , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.