On slightly \(b-\mathscr{I}\)-continuous multifunctions

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0058

Abstract

In this paper, we introduce and study the concept of slightly \(b-\mathscr{I}\)-continuous multifunctions on ideal topological space.

Keywords:

Ideal topological spaces, \(b-\mathscr{I}\)-open sets, \(b-\mathscr{I}\)-closed sets, slightly \(b-\mathscr{I}\)-continuous multifunctions , \(b-\mathscr{I}\)-closed sets

Mathematics Subject Classification:

Mathematics
  • M. Sebasti Jeya Pushpam Department of Mathematics, Auxilium college of Arts and Science for Women (Affiliated to Bharathidasan University), Karambakudi-622302, Tamil Nadu, India.
  • N. Rajesh Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan University), Thanjavur-613005, Tamil Nadu, India.
  • Pages: 1070-1073
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

M. Akadag, On $b-mathscr{I}$-open sets and $b-mathscr{I}$-continuous functions, Internat. J. Math. Math. Sci., (2007), 1-13.

R. Balaji and N. Rajesh, Some new separation axioms via $223-232$.

T. Banzaru, Multifunctions and $M$-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.

E. Ekici, Slightly continuous multifunctions, International J. Math. Sci., 4(1)(2005), 69-78.

E. Ekici, Generalization of perfectly continuous, Regular set-connected and clopen functions, Acta. Math. Hungarica, 107(3)(2005), 193-206.

P. GomathiSundari, N. Rajesh and R. Muthu Vijayalakshmi, On upper and lower $b-mathscr{I}$-continuous multifunctions, Aryabhatta Journal of Mathematics & Informatics, 11(1)(2019), 87-90.

D. Jankovic and T. R. Hamlett, New Toplogies From Old Via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295-310.

K. Kuratowski, Topology, Academic Press, New York, 1966.

T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26 (1993), 363-380.

T. Noiri and V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20(1) (2010), 185-214.

T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstraio Math., 26(1993), 363-380.

V. Popa, A note on weakly and almost continuous multifunctions, Univ, u NovomSadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat., 21(1991), 31-38.

V. Popa, Weakly continuous multifunction, Boll. Un. Mat. Ital., (5) 15-A(1978), 379-388.

R. Staum, The algebra of bounded continuous fuctions into a nonarchimedean field, Pacific J. Math., 50(1974), $169-185$.

R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

M. Sebasti Jeya Pushpam, and N. Rajesh. “On Slightly \(b-\mathscr{I}\)-Continuous Multifunctions”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1070-3, doi:10.26637/MJM0803/0058.