\(\mathscr{A} \mathscr{L}\) and \(\mathscr{A} \mathscr{L}_2\)-Paracompact spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0064

Abstract

This paper deals with the new concepts of \(\mathscr{A} \mathscr{L}\)-Paracompact spaces and \(\mathscr{A} \mathscr{L}_2\)-Paracompact spaces. Also we have proved that every \(\mathscr{A} \mathscr{L}\)-Paracompactness and \(\mathscr{A} \mathscr{L}_2\)-Paracompactness has a topological property.

Keywords:

Angelic spaces, \(\mathscr{L}\)-Paracompact, \(\mathscr{L}_2\)-Paracompact , \(\mathscr{L}\)-Normal, \(\mathscr{A}\mathscr{L}\)-Paracompact , \(\mathscr{A}\mathscr{L}_2\)-Paracompact, \(\mathscr{A}\mathscr{L}\)-Normal

Mathematics Subject Classification:

Mathematics
  • S. Umamaheswari Department of Mathematics, Kandaswami Kandar’s College, Velur-638182,Tamil Nadu, India.
  • M. Saraswathi Department of Mathematics, Kandaswami Kandar’s College, Velur-638182,Tamil Nadu, India.
  • Pages: 1110-1113
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

$mathrm{S}$. AlZahrani and L. Kalantan, $C$-normal topological property, Filomat, 31 (2017), 407-411.

J. Bourgain, D.H. Fermlin and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math., 100(1978), 845-886.

R. Engelking, On the double circumference of Alexandroff, Bull Acad Pol Sci Ser Astron Math Phys., 16(8)(1968), 629-634.

R. Engelking, General Topology, Heldermann, Berlin, 1989.

Eric K. van Douwen, The integers and topology in Handbook of Set-Theoretic Topology, Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: NorthHolland, (1984), 111-167.

I. Juhasz, K. Kunen and M.E. Rudin, Two More Hereditarily Separable non-Lindelöf spaces, Cand. J. Math., 28(1976), 998-1005.

L. Kalantan, Results about $k$-normality, Topo. Appl., 125(2002), 47-62.

L. Kalantan and M. Saeed, L-Normality, Topology Proceedings, 50 (2017), 141-149.

L. Kalantan and P. Szeptycki, $k$-normality and products of ordinals, Topo. Appl., 123(2002), 537-545.

Lufti N. Kalantan and A. Fateh, On almost normality, Demon Stratio Math., 41(4)(2008), 961-968.

Lufti N. Kalantan, L-paracompactness and $L_2-$ paracompactness, Hacet. J.Math. Stat., 48(3)(2019), 779-784.

Munkers. R. James, Topology, Second Edition, Pearson Education Pte. Ltd., Singapore.

M.E. Rudin, A Separable Dowker space, Symposia Mathematica, Instituto Nazionale di Alta Mathematica, 1973.

M.M. Saeed, Countable Normality, J. Math. Anal., $9(1)(2018), 116-123$.

M.M. Saeed, L. Kalantan and J. Alzumi, C - Paracompactness and $C_2$ - Paracompactness, Turk. J. Math., 43(2019), $9-20$.

E.V. Shchepin, Real valued functions and spaces close to normal, Sib. J. Math., 13(1972), 1182-1196.

M. Singal and A.R. Singal, Mildly normal spaces, Kyungpook Math J, 13 (1973), 29-31.

M.K. Singal, Singal and Shashi Prabha Arya, Almost normal and almost completely regular spaces, Glasnik Mat. Ser. III, 25(5)(1970), 141-152.

L. Steen and J.A. Seebach, Counterexamples in Topology, Mineola, NY, USA: USA; Dover Publications, 1995.

E.K. Van Douwen, The Integers and Topology. In: KunenK, editor. Handbook of Set-Theoretic Topology, Amsterdam, the Netherlands: North-Holland, (1984), 111-167.

W. Weiss, Small Dowker Spaces, Pacific J. Math., (1981), 485-492.

V. Zaicev, Some classes of $T S mathrm{~s}$ and their bicompact extensions (Russian), Dokl. Akad. Nauk SSSR, 178(1968), 778-779.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

S. Umamaheswari, and M. Saraswathi. “\(\mathscr{A} \mathscr{L}\) and \(\mathscr{A} \mathscr{L}_2\)-Paracompact Spaces”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1110-3, doi:10.26637/MJM0803/0064.