\(\mathscr{A} \mathscr{L}\) and \(\mathscr{A} \mathscr{L}_2\)-Paracompact spaces
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0064Abstract
This paper deals with the new concepts of \(\mathscr{A} \mathscr{L}\)-Paracompact spaces and \(\mathscr{A} \mathscr{L}_2\)-Paracompact spaces. Also we have proved that every \(\mathscr{A} \mathscr{L}\)-Paracompactness and \(\mathscr{A} \mathscr{L}_2\)-Paracompactness has a topological property.
Keywords:
Angelic spaces, \(\mathscr{L}\)-Paracompact, \(\mathscr{L}_2\)-Paracompact , \(\mathscr{L}\)-Normal, \(\mathscr{A}\mathscr{L}\)-Paracompact , \(\mathscr{A}\mathscr{L}_2\)-Paracompact, \(\mathscr{A}\mathscr{L}\)-NormalMathematics Subject Classification:
Mathematics- Pages: 1110-1113
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
$mathrm{S}$. AlZahrani and L. Kalantan, $C$-normal topological property, Filomat, 31 (2017), 407-411.
J. Bourgain, D.H. Fermlin and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math., 100(1978), 845-886.
R. Engelking, On the double circumference of Alexandroff, Bull Acad Pol Sci Ser Astron Math Phys., 16(8)(1968), 629-634.
R. Engelking, General Topology, Heldermann, Berlin, 1989.
Eric K. van Douwen, The integers and topology in Handbook of Set-Theoretic Topology, Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: NorthHolland, (1984), 111-167.
I. Juhasz, K. Kunen and M.E. Rudin, Two More Hereditarily Separable non-Lindelöf spaces, Cand. J. Math., 28(1976), 998-1005.
L. Kalantan, Results about $k$-normality, Topo. Appl., 125(2002), 47-62.
L. Kalantan and M. Saeed, L-Normality, Topology Proceedings, 50 (2017), 141-149.
L. Kalantan and P. Szeptycki, $k$-normality and products of ordinals, Topo. Appl., 123(2002), 537-545.
Lufti N. Kalantan and A. Fateh, On almost normality, Demon Stratio Math., 41(4)(2008), 961-968.
Lufti N. Kalantan, L-paracompactness and $L_2-$ paracompactness, Hacet. J.Math. Stat., 48(3)(2019), 779-784.
Munkers. R. James, Topology, Second Edition, Pearson Education Pte. Ltd., Singapore.
M.E. Rudin, A Separable Dowker space, Symposia Mathematica, Instituto Nazionale di Alta Mathematica, 1973.
M.M. Saeed, Countable Normality, J. Math. Anal., $9(1)(2018), 116-123$.
M.M. Saeed, L. Kalantan and J. Alzumi, C - Paracompactness and $C_2$ - Paracompactness, Turk. J. Math., 43(2019), $9-20$.
E.V. Shchepin, Real valued functions and spaces close to normal, Sib. J. Math., 13(1972), 1182-1196.
M. Singal and A.R. Singal, Mildly normal spaces, Kyungpook Math J, 13 (1973), 29-31.
M.K. Singal, Singal and Shashi Prabha Arya, Almost normal and almost completely regular spaces, Glasnik Mat. Ser. III, 25(5)(1970), 141-152.
L. Steen and J.A. Seebach, Counterexamples in Topology, Mineola, NY, USA: USA; Dover Publications, 1995.
E.K. Van Douwen, The Integers and Topology. In: KunenK, editor. Handbook of Set-Theoretic Topology, Amsterdam, the Netherlands: North-Holland, (1984), 111-167.
W. Weiss, Small Dowker Spaces, Pacific J. Math., (1981), 485-492.
V. Zaicev, Some classes of $T S mathrm{~s}$ and their bicompact extensions (Russian), Dokl. Akad. Nauk SSSR, 178(1968), 778-779.
- NA
Similar Articles
- Saurabh Porwal, Dilshad Ahamad, Mapping properties of some integral operators associated with generalized Bessel functions , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.