Common fixed point theorems in \(r s_b\)-distance with property \(C\) and weakly commuting maps in probabilistic \(s_b\)-metric space
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0066Abstract
We establish the conception of \(r s_b\)-distance with property \(C\) on a Menger Probabilistic \(s_b\)-metric space. Moreover, we have proved a few fixed point theorems in a Complete Menger Probabilistic \(s_b\)-metric space. Also we display the Weakly Commuting maps in same space.
Keywords:
Weakly Commuting maps, Menger Probabilistic \( s_b\)-metric space, \(r r_b\)-distance, \(r s_b\)-distance with property \(C\)Mathematics Subject Classification:
Mathematics- Pages: 1119-1125
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
M. Abderrahim and O. Rachid, Probabilistic $b$-metric spaces and non linear contractions, Fixed Point Theory Applications, (2017) 2017:29 .
C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46(1993), 91-98.
I.A. Bakhtin, The contraction principle in quasimetric spaces, Functional Analysis. A., Ulianwsk, Gos. Ped. Ins., 30(1989), 26-37.
A. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82(1976), 641-657.
S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematicaet Informatica Universitatis Ostraviersis, 1(1993), 5-11.
B. Ismat and A. Mujahid, Fixed points and Best approximation in Menger convex Metric spaces, ArchivumMathematicum (BRNO) Tomus, 41(2005), 389-397.
M.A. Khamsi and V.Y. Kreinovich, Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, Math. Jab., 44(1996), 513-520.
S. Nizar and M. Nabil, A fixed point theorem in $S_b$-metric spaces, J. Math. Computer Science, 16(2016), 131-139.
R. Saadati, D.O'Regan, S.M. Vaezpour and J.K. Kim, Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, Bulletin of the Iranian Mathematical Society, 35(2)(2009), 97-117.
- NA
Similar Articles
- S. Umamaheswari, M. Saraswathi, \(\mathscr{A} \mathscr{L}\) and \(\mathscr{A} \mathscr{L}_2\)-Paracompact spaces , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.