On the dissipative conformable fractional singular Sturm-Liouville operator
Downloads
DOI:
https://doi.org/10.26637/mjm1104/009Abstract
In this study, we consider the dissipative conformable fractional singular Sturm-Liouville operator. Using Krein’s theorem, we proved a completeness theorem of the system of eigenvectors and associated vectors (or root vectors) of this operator.
Keywords:
Conformable fractional Sturm-Liouville equation, Dissipative operators, Completeness theoremMathematics Subject Classification:
34A08, 26A33, 34L10, 34L40, 34B40, 47H06- Pages: 457-464
- Date Published: 01-10-2023
- Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)
T. A BDELJAWAD , On conformable fractional calculus, J. Comput Appl. Math., 279(2015), 57–66. DOI: https://doi.org/10.1016/j.cam.2014.10.016
B. P. A LLAHVERDIEV , H. T UNA AND Y. Y ALC ¸ INKAYA , Conformable fractional Sturm–Liouville equation, Math. Meth. Appl. Sci., 42(10)(2019), 3508–3526. DOI: https://doi.org/10.1002/mma.5595
B. P. A LLAHVERDIEV , H. T UNA AND Y. Y ALC ¸ INKAYA , A completeness theorem for dissipative conformable fractional Sturm–Lioville operator in singular case, Filomat, 36(7)(2022), 2461–2474. DOI: https://doi.org/10.2298/FIL2207461A
D. B ALEANU , F. J ARAD AND E. U GURLU , Singular conformable sequential differential equations with distributional potentials, Quaest. Math., https://doi.org/10.2989/16073606.2018.1445134. DOI: https://doi.org/10.2989/16073606.2018.1445134
E. B AIRAMOV AND E. U˘GURLU , Krein’s theorem for the dissipative operators with finite impulsive effect, Numer. Funct. Anal. Optim., 36(2015), 256–270. DOI: https://doi.org/10.1080/01630563.2014.970642
N. D UNFORD AND J. T. S CHWARTZ , Linear Operators, Part II: Spectral Theory, Interscience, New York, 1963.
I. C. G OHBERG AND M. G. K REIN , Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, 1969.
G. G USEINOV , Completeness of the eigenvectors of a dissipative second order difference operator: dedicated to Lynn Erbe on the occasion of his 65th birthday, J. Difference Equ. Appl., 8(4)(2002), 321–331. DOI: https://doi.org/10.1080/1026190290017388
R. K HALIL , M. A L H ORANI , A. Y OUSEF AND M. S ABABHEH , A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65–70. DOI: https://doi.org/10.1016/j.cam.2014.01.002
R. K HALIL AND H. A BU -S HAAB , Solution of some conformable fractional differential equations, Intern, J. Pure Appl. Math., 103(4)(2015), 667–673. DOI: https://doi.org/10.12732/ijpam.v103i4.6
M. G. K REIN , On the indeterminate case of the Sturm–Liouville boundary problem in the interval (0,∞), Izv. Akad. Nauk SSSR Ser. Mat., 16(4)(1952), 293–324 (in Russian).
M. A. N AIMARK , Linear Differential Operators II, Ungar, New York, 1968.
H. T UNA AND A. E RYILMAZ , On q-Sturm–Liouville operators with eigenvalue parameter contained in the boundary conditions, Dynam. Syst. Appl., 24(4)(2015), 491–501.
H. T UNA , Completeness theorem for the dispative Sturm–Liouville operator on bounded time scales, Indian J. Pure Appl. Math., 47(3) (2016), 535–544. DOI: https://doi.org/10.1007/s13226-016-0196-1
A. Z ETTL , Sturm–Liouville Theory, in: Mathematical Surveys and Monographs, vol. 121, American Mathematical Society, 2005.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 YÜKSEL YALÇINKAYA, Bilender P. Allahverdiev, Hüseyin Tuna
This work is licensed under a Creative Commons Attribution 4.0 International License.