Planarity of a unit graph: Part -II \(|Max(R)|= 2\) case

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0075

Abstract

The rings considered in this article are commutative with identity \(1 \neq 0\). Recall that the unit graph of a ring \(R\) is a simple undirected graph whose vertex set is the set of all elements of the ring \(R\) and two distinct vertices \(x, y\) are adjacent in this graph if and only if \(x+y \in U(R)\) where \(U(R)\) is the set of all unit elements of ring \(R\). We denote this graph by \(U G(R)\). In this article we classified rings \(R\) with \(|\operatorname{Max}(R)|=2\) such that \(U G(R)\) is planar.

Keywords:

Planar graph, \(\left(K u_1^*\right) \) , \(\left(K u_2^*\right)\)

Mathematics Subject Classification:

Mathematics
  • Jaydeep Parejiya Department of Mathematics, Government Polytechnic, Rajkot, Rajkot-360005, India.
  • Pravin Vadhel Department of Mathematics, V.V.P. Engineering College, Rajkot, Rajkot-360005, India.
  • Patat Sarman Department of Mathematics, Sir B.P.T.I, Bhavnagar, Bhavnagar-364002, India.
  • Pages: 1162-1170
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

S.Akbari, B.Miraftar and R.Nikandish, A note on comaximal ideal graph of commutative rings, arXiv: 1307.5401 [math.AC], 2013.

N.Ashrafi, H.R.Mainmani, M.R.Pournaki and S.Yassemi, Unit graph associated with rings, Comm. Algebra, 38(2010), 2851-2871.

M.F. Atiyah and I.G.Macdonald, Introduction to Commutative Algebra, Addison-Wesley publishing Company, 1969.

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer-Verlag, New York, 2000.

N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India Private Limited, New Delhi, 1994.

M.I. Jinnah and S.C. Mathew, When is the comaximal graph split?, Comm. Algebra 40 (7)(2012), 2400-2404.

H.R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319 2008, 1801-1808.

S.M. Moconja and Z.Z. Petrovic, On the structure of comaximal graphs of commutative rings with identity, Bull. Aust. Math. Soc., 83(2011), 11-21.

J. Parejiya, S. Patat and P. Vadhel, Planarity of unit graph Planarity Part -I Local Case, Submitted to Malaya Journal of Matematik, 2020.

K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull. 57(2) 2014, 413-423.

P.K. Sharma and S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176(1995), 124-127.

S. Visweswaran and Jaydeep Parejiya, When is the complement of the comaximal graph of a commutative ring planar?, ISRN algebra 2014 2014, 8 pages.

M. Ye and T.Wu, Comaximal ideal Graphs of commutative rings, J. Algebra Appl. 6(2012), 1-09.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Jaydeep Parejiya, Pravin Vadhel, and Patat Sarman. “Planarity of a Unit Graph: Part -II \(|Max(R)|= 2\) Case”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1162-70, doi:10.26637/MJM0803/0075.