Eccentric domination decomposition of graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0078Abstract
A decomposition \(\left(G_1, G_2 \ldots . . G_n\right)\) of \(G\) is said to be an eccentric domination decomposition (EDD) if i) \(E(G)=E\left(G_1\right) \cup E\left(G_2\right) \cup \ldots \cup E\left(G_n\right)\) ii) Each \(G_i\) is connected iii) \(\gamma_{e d}\left(G_i\right)=i, i=1,2 \ldots n\). If a graph \(G\) has EDD, we say that \(G\) admits eccentric domination decomposition.
Keywords:
Decomposition, Domination, Eccentric domination decompositionMathematics Subject Classification:
Mathematics- Pages: 1186-1188
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
M. Bhanumathi, J. John Flavia, The Minimum Eccentric Dominating Graph, Procedia Computer Science, 47(2015), 337-341.
N. Gnanadhas and J. Paul Raj Joseph, Continuous monotonic decomposition of graphs, International Journal of Management and System, 16(3)(2000), 333-344.
F. Harary, Graph Theory, Narosa Publishing House, New Delhi, 1998.
T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekkar, Inc, 1998.
T.N. Janakiraman, M. Bhanumathi and S. Muthammai., Eccentric Domination in Graphs, International Journal of Engineering Science, Advanced Computing and BioTechnology, 2(2000), 55-70.
JurajBosak, Decomposition of Graphs, Kluwer Academic Publishers, 1990.
K. Lakshmi Prabha, K. Nagarajan, Ascending domination decomposition of graphs, International Journal of Mathematics and Soft Computing,4(1)(2014), 119-128.
K. Lakshmi Prabha, K. Nagarajan, Ascending domination Decomposition of Subdivision of graphs, International Journal of Mathematics and Soft Computing, 4(1)(2015), 105-114.
- NA
Similar Articles
- M. Deepa, S.S. Surekha, Characterization of \( j\)-open sets in minimal structure spaces , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.