On some topological indices of thorn graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0083

Abstract

In this paper, the relation between the reciprocal Randic index, Reduced reciprocal Randic index and Atom-bond connectivity index of a simple connected graph and its thorn graph is stablished and the atom-bond connectivity \((A B C)\) index of a graph \(G\) is defined as \(A B C(G)=\sum_{w v \in E(G)} \sqrt{\frac{d_u+d_v-2}{d_u d_v}}\), where \(E(G)\) is the edge set and \(d_u\) is the degree of vertex \(u\) of \(G\) [13]. Reciprocal Randic \((R R)\) index of a graph \(G\) is defined as \(R R(G)=\sum_{w v \in E(G)} \sqrt{d_u d_v}\), where \(E(G)\) is the edge set and \(d_u\) is the degree of vertex \(u\) of \(G\). Reduced Reciprocal Randic \((R R R)\) index of a graph \(G\) is defined as \(\operatorname{RRR}(G)=\sum_{w v \in E(G)} \sqrt{\left(d_u-1\right)\left(d_v-1\right)}\), where \(E(G)\) is the edge set and \(d_u\) is the degree of vertex \(u\) of \(G\). Results are applied to compute the reciprocal Randic index, Reduced reciprocal Randic index and Atom-bond connectivity index of thorn rings, thorn paths, thorn rods, thorn star, thorn star \(S_n\left(p_1, p_2, \cdots, p_{n-1}, p_n\right)\).

Keywords:

Reciprocal Randic IndexReciprocal Randic Index, Reduced Reciprocal Randic Index and Atom-Bond Connectivity, Degree Distance, Thorn Graph

Mathematics Subject Classification:

Mathematics
  • Shiladhar Pawar Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru-570006, India.
  • N. D. Soner Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru-570006, India.
  • Pages: 1206-1212
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

Bonchev D., Klein, D.J., On the Wiener number of thorn trees, stars, rings and rods. Croat. Chem. Acta, 75(2)(2002), 613-620.

Bytautas L., Bonchev D., Klein D.J., On the generation of mean Wiener numbers of thorny graphs, MATCH Commun. Math. Comput. Chem. 44(2001), 31-40

E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463(2008) 422-425.

E. Estrada, L. Torres, L. Rodriguez, I. Gutman, Anatombond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. Sect. A, 37(1998), $849-855$.

Furtula, B., Gutman, I. and Elphick, C..Three new/old vertex-degree-based topological indices. $mathrm{MATCH} mathrm{Com-}$ munications in Mathematical and in Computer Chemistry, $72(2014), 617-632$.

Gutman, I. Distance in thorny graph. Publ. Inst. Math. Beograd 63(1998) 31-36.

Knor M., Potocnik P., Skrekovski R. Relationship between the edge-Wiener index and the Gutman index of a graph, Discrete Appl. Math., 167(2014), 197-201.

Mahdieh Azari, On The Gutman Index Of Thorn Graphs, Kragujevac J. Sci. 40(2018), 33-48.

Manso, F. C. G., J'unior, H. S., Bruns, R. E., Rubira, A. F. and Muniz, E.C.. Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: The Fi index, Journal of Molecular Liquids 165(2012), 125-132.

A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Communi. Combin. Optim., 2(2)(2017), 99-117.

A. M. Naji and N. D. Soner, The first leap Zagreb index of some graph opertations, Int. J. Appl. Graph Theory, 2(1) (2018), 7-18.

M. Randic, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615.

Rundan Xing, Bo Zhoua and Fengming Dong. On atombond connectivity index of connected graphs, Discrete Applied Mathematics 159(2011) 1617-1630.

P. Shiladhar, A. M. Naji and N. D.Soner. Leap Zagreb indices of Some wheel related Graphs, J. Comp. Math. Sci., 9(3) (2018), 221-231.

P. Shiladhar, A. M. Naji and N. D.Soner. Computation of leap Zagreb indices of Some Windmill Graphs, Int. J. Math. And Appl., 6(2-B)(2018), 183-191.

R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

Vukicevic D., Graovac A., On modified Wiener indices of thorn graphs, MATCH Commun. Math. Comput. Chem., $50(2004), 93-108$.

Vukicevic D., Nikolic S., Trinajstic N. On the Schultz index of thorn graphs. Internet Electron. J. Mol. Des., $4(2005), 501-514$

Zhou B. On modified Wiener indices of thorn trees, Kragujevac J. Math., 27(2005), 5-9.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Shiladhar Pawar, and N. D. Soner. “On Some Topological Indices of Thorn Graphs”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1206-12, doi:10.26637/MJM0803/0083.