On some topological indices of thorn graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0083Abstract
In this paper, the relation between the reciprocal Randic index, Reduced reciprocal Randic index and Atom-bond connectivity index of a simple connected graph and its thorn graph is stablished and the atom-bond connectivity \((A B C)\) index of a graph \(G\) is defined as \(A B C(G)=\sum_{w v \in E(G)} \sqrt{\frac{d_u+d_v-2}{d_u d_v}}\), where \(E(G)\) is the edge set and \(d_u\) is the degree of vertex \(u\) of \(G\) [13]. Reciprocal Randic \((R R)\) index of a graph \(G\) is defined as \(R R(G)=\sum_{w v \in E(G)} \sqrt{d_u d_v}\), where \(E(G)\) is the edge set and \(d_u\) is the degree of vertex \(u\) of \(G\). Reduced Reciprocal Randic \((R R R)\) index of a graph \(G\) is defined as \(\operatorname{RRR}(G)=\sum_{w v \in E(G)} \sqrt{\left(d_u-1\right)\left(d_v-1\right)}\), where \(E(G)\) is the edge set and \(d_u\) is the degree of vertex \(u\) of \(G\). Results are applied to compute the reciprocal Randic index, Reduced reciprocal Randic index and Atom-bond connectivity index of thorn rings, thorn paths, thorn rods, thorn star, thorn star \(S_n\left(p_1, p_2, \cdots, p_{n-1}, p_n\right)\).
Keywords:
Reciprocal Randic IndexReciprocal Randic Index, Reduced Reciprocal Randic Index and Atom-Bond Connectivity, Degree Distance, Thorn GraphMathematics Subject Classification:
Mathematics- Pages: 1206-1212
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
Bonchev D., Klein, D.J., On the Wiener number of thorn trees, stars, rings and rods. Croat. Chem. Acta, 75(2)(2002), 613-620.
Bytautas L., Bonchev D., Klein D.J., On the generation of mean Wiener numbers of thorny graphs, MATCH Commun. Math. Comput. Chem. 44(2001), 31-40
E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463(2008) 422-425.
E. Estrada, L. Torres, L. Rodriguez, I. Gutman, Anatombond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. Sect. A, 37(1998), $849-855$.
Furtula, B., Gutman, I. and Elphick, C..Three new/old vertex-degree-based topological indices. $mathrm{MATCH} mathrm{Com-}$ munications in Mathematical and in Computer Chemistry, $72(2014), 617-632$.
Gutman, I. Distance in thorny graph. Publ. Inst. Math. Beograd 63(1998) 31-36.
Knor M., Potocnik P., Skrekovski R. Relationship between the edge-Wiener index and the Gutman index of a graph, Discrete Appl. Math., 167(2014), 197-201.
Mahdieh Azari, On The Gutman Index Of Thorn Graphs, Kragujevac J. Sci. 40(2018), 33-48.
Manso, F. C. G., J'unior, H. S., Bruns, R. E., Rubira, A. F. and Muniz, E.C.. Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: The Fi index, Journal of Molecular Liquids 165(2012), 125-132.
A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Communi. Combin. Optim., 2(2)(2017), 99-117.
A. M. Naji and N. D. Soner, The first leap Zagreb index of some graph opertations, Int. J. Appl. Graph Theory, 2(1) (2018), 7-18.
M. Randic, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615.
Rundan Xing, Bo Zhoua and Fengming Dong. On atombond connectivity index of connected graphs, Discrete Applied Mathematics 159(2011) 1617-1630.
P. Shiladhar, A. M. Naji and N. D.Soner. Leap Zagreb indices of Some wheel related Graphs, J. Comp. Math. Sci., 9(3) (2018), 221-231.
P. Shiladhar, A. M. Naji and N. D.Soner. Computation of leap Zagreb indices of Some Windmill Graphs, Int. J. Math. And Appl., 6(2-B)(2018), 183-191.
R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
Vukicevic D., Graovac A., On modified Wiener indices of thorn graphs, MATCH Commun. Math. Comput. Chem., $50(2004), 93-108$.
Vukicevic D., Nikolic S., Trinajstic N. On the Schultz index of thorn graphs. Internet Electron. J. Mol. Des., $4(2005), 501-514$
Zhou B. On modified Wiener indices of thorn trees, Kragujevac J. Math., 27(2005), 5-9.
- NA
Similar Articles
- J.B. Toranagatti, A note on pre generalized b-closed set , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.