k-Lehmer three mean labeling of some graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0085

Abstract

A function $\mathrm{h}$ is called $\mathrm{k}$ - Lehmer-3 mean graph $\mathrm{G}$ with $\mathrm{r}$ vertices and $\mathrm{s}$ edges, if it is possible to label the vertices $v \in V$ with distinct labels $h(x)$ from $k, k+1, k+2, \ldots, k+s$ in such a way that each edge $e=x y$ is labeled with $h(e)=\left\lceil\frac{h(x)^3+h(y)^3}{h(x)^2+h(y)^2}\right\rceil$ (or) $\left\lfloor\frac{h(x)^3+h(y)^3}{h(x)^2+h(y)^2} \mid\right.$ then the edge labels are distinct.In this paper we proved k-Lehmer-three mean labeling of some standard graphs.

Keywords:

Lehmer three mean labeling, k- Lehmer three mean labeling, path, comb, caterpillar, kite

Mathematics Subject Classification:

Mathematics
  • M.J. Abisha Research Scholar, Reg No:19113232092003, Department of Mathematics, St Jude’s College, Thoothoor-629176, Tamil Nadu, India.
  • K. Rubin Mary Department of Mathematics, St Jude’s College, Thoothoor-629176, Tamil Nadu, India.
  • Pages: 1219-1221
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatories, (2019), DS6.

F. Harary, Graph theory, Narosa Publication House Reading, New Delhi, 1988.

S. Somasundaram and R. Ponraj, Mean Labeling of Graphs, National Academy of Science Letters, 26(2003), 210-213.

S. Somasundaram, S.S. Sandhya and T.S. Pavithra, Lehmer-3 mean labeling of graphs, International Journal of Mathematical Forum, 12(17)(2017), 819-825.

S. Somasundaram and R. Ponraj and S. S. Sandhya, Harmonic mean labeling of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

M.J. Abisha, and K. Rubin Mary. “K-Lehmer Three Mean Labeling of Some Graphs”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1219-21, doi:10.26637/MJM0803/0085.