k-Lehmer three mean labeling of some graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0085Abstract
A function $\mathrm{h}$ is called $\mathrm{k}$ - Lehmer-3 mean graph $\mathrm{G}$ with $\mathrm{r}$ vertices and $\mathrm{s}$ edges, if it is possible to label the vertices $v \in V$ with distinct labels $h(x)$ from $k, k+1, k+2, \ldots, k+s$ in such a way that each edge $e=x y$ is labeled with $h(e)=\left\lceil\frac{h(x)^3+h(y)^3}{h(x)^2+h(y)^2}\right\rceil$ (or) $\left\lfloor\frac{h(x)^3+h(y)^3}{h(x)^2+h(y)^2} \mid\right.$ then the edge labels are distinct.In this paper we proved k-Lehmer-three mean labeling of some standard graphs.
Keywords:
Lehmer three mean labeling, k- Lehmer three mean labeling, path, comb, caterpillar, kiteMathematics Subject Classification:
Mathematics- Pages: 1219-1221
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatories, (2019), DS6.
F. Harary, Graph theory, Narosa Publication House Reading, New Delhi, 1988.
S. Somasundaram and R. Ponraj, Mean Labeling of Graphs, National Academy of Science Letters, 26(2003), 210-213.
S. Somasundaram, S.S. Sandhya and T.S. Pavithra, Lehmer-3 mean labeling of graphs, International Journal of Mathematical Forum, 12(17)(2017), 819-825.
S. Somasundaram and R. Ponraj and S. S. Sandhya, Harmonic mean labeling of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.
- NA
Similar Articles
- J.B.Toranagatti, On almost contra \(\delta g p\)-continuous functions in topological spaces , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.