Lie group investigation of fractional partial differential equation using symmetry

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0091

Abstract

In this paper, we make use of Lie group investigation of the following non-linear of fractional partial differential equations using symmetry.
$$
\begin{aligned}
& D^{\alpha_1} u_1=\frac{1}{2} u_1 \\
& D^{\alpha_2} u_2=u_2+u_1{ }^2,
\end{aligned}
$$
where \(\alpha_1\) and \(\alpha_2\) are real constant, \(0<\alpha_1 \alpha_2 \leq 1\) and \(u_1\) and \(u_2\) are functions of independent variable \(\mathrm{x}\) and \(D^\alpha u\) is a fractional derivative of \(u\) w.r.t. \(x\) which can be the following \(R-L\) type.
$$
\frac{\partial^\alpha u}{\partial x^\alpha}=\left\{\begin{array}{cc}
\frac{\partial^m u}{\partial x^m} & \alpha=m \in N \\
\frac{1}{(m-\alpha) !} \frac{\partial^m}{d x^m} \int_0^t(t-\tau)^{m-\alpha-1} u(\tau, x) d \tau & m-1<\alpha<m, m \in N
\end{array}\right.
$$

Keywords:

Lie group, Nonlinear fractional differential equation, Reimann Liouville integral and derivative, Symmetry analysis, Invariant solution

Mathematics Subject Classification:

Mathematics
  • Govind P. Kamble Department of Mathematics, P. E. S. College of Engineering, Nagsenvana, Aurangabad-431002(M.S.), India.
  • Mohammed Mazhar Ul-Haque Department of Mathematics, GRACE, SRTM, University, Nanded-431606 (M.S.), India.
  • Bhausaheb R. Sontakke Department of Mathematics, Pratishthan College, Paithan, Aurangabad-431002 (M.S.), India .
  • Pages: 1243-1247
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

P. J. Olver, Applications of Lie groups to Differential Equations, (Grad. Texts Math., Vol.107), Springer, New York, 1986.

L. V. Ovsiannikov, Group Analysis of Differential Equations [in Russian], Moscow, Nauka (1978); English transl., Acad. Press, New York, 1982.

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, California-U.S.A., 1999.

P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269(2002), 387-400.

P. L.Butzer, A. A.Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, Journal of Mathematical Analysis and Applications, $269(2002), 1-27$.

P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, Journal of Mathematical Analysis and Applications, 270(2002), 1-15.

G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New York, 2002

E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., 227(1998), $81-97$

R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, Continuous groups of transformations of differential equations of fractional order, Vestn. UGATU, 9(32)(21)(2007), $125-135$.

G. W. Wang, X. Q. Liu, Y. Y.Zhang, Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci. Numer. Simul., 18(2013), 2321-2326.

G. W. Bluman and S. C. Anco, Symmetries and Integration Methods for Differential Equations, Vol. 154. New York, NY: Springer-Verlag; 2002.

B. Bira and T. Raja Sekhar, Lie group analysis and propagation of weak discontinuity in one-dimensional ideal isentropic magnetogasdynamics, Appl. Anal., $93(12)(2014), 2598-2607$.

P. J. Olver, Applications of Lie Groups to Differential Equations, New York, NY: Springer, 1986.

E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J Math Anal Appl., 227(1)(1998), $81-97$

V. D. Djordjevic and T. M. Atanackovic, Similarity solutions to nonlinear heat conduction and Burgers/KortewegdeVries fractional equations, J. Comput. Appl. Math., $222(2)(2008), 701-714$

J. Hu, Y. Ye, S. Shen, J. Zhang, Lie symmetry analysis of the time fractional KdV-type equation, Appl Math Comput., 233(2014), 439-444.

Q. Huang and R. Zhdanov, Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative, Phys. A, 409(2014), 110118.

A. Bekir, E. Askoy and A. C. Cevikel, Exact solutions of nonlinear time fractional differential equations by subequation method, Math, Meth, Appl, Sci., 238(13)(2015), 2779-2784.

I. B. Giresunlu, S. Y. Ozkan and E. Yasar, On the exact solutions, Lie symmetry analysis, and conservation laws of Schamel-Korteweg-de Vries equation, Math. Meth. Appl. Sci., 40(11)(2017), 3927-3936.

B. Bira, T. Raja Sekhar and D. Zeidan, Application of Lie groups to compressible model of two-phase flows, Comput. Math. Appl., 71(1)(2016), 46-56.

R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Phys Scr T., 2007; 136:014016.

H. Liu ; Complete group classifications and symmetry reductions of the fractional fifth-order $mathrm{KdV}$ types of equations, Stud Appl Math., 131(4)(2013), 317-330.

T. L. Holambe, Mohammed Mazhar-ul-Haque; A Remark on semi group property in Fractional Calculus, Int. J. Math. Computer Appl. Res., 4(6)(2014), 27-32.

T. L. Holambe, Mohammed Mazhar-ul-Haque, Govind P. Kamble, Approximations to the Solution of Cauchy Type Weighted Nonlocal Fractional Differential Equation Nonlinear Anal. Differential Equ., 4(15)(2016), 697-717.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Govind P. Kamble, Mohammed Mazhar Ul-Haque, and Bhausaheb R. Sontakke. “Lie Group Investigation of Fractional Partial Differential Equation Using Symmetry”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1243-7, doi:10.26637/MJM0803/0091.