An efficient analytical approach for solving fractional Fokker-Planck equations

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0092

Abstract

The present study focuses on investigating the approximate analytical solutions of linear and non- linear FokkerPlanck equations (FPEs) with space- and time-fractional derivatives using an efficient analytical method, namely the Sumudu transform iterative method (STIM). The fractional derivatives are represented in the terms of Caputo. Analytical outcomes are obtained in the form of a converging series with easily computable components and are shown graphically. The results of the study suggest that the approach is simple to implement and very attractive in terms of computation.

Keywords:

Fractional differential equations, Sumudu transform, Fokker-Planck equations, Iterative method, Mittag-Leffler function, Caputo fractional derivative

Mathematics Subject Classification:

Mathematics
  • R.K. Bairwa Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India.
  • Karan Singh Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India.
  • Pages: 1248-1258
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

Y. A. Amer, A. M. S. Mahdy and E. S. M. Youssef, Solving systems of fractional nonlinear equations of Emden Fowler type by using sumudu transform method. Glob. J. Pure Appl. Math., 14(1)(2018), 91-113.

D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific, Singapore, (2012).

F. B. M. Belgacem and A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, Int. J. Stochastic Analysis, (2006).

S., Bhalekar, V., Daftardar-Gejji, Convergence of the new iterative method, Int. J. Differ. Equ. (2011).

J. Biazar, K. Hosseini, and P. Gholamin, Homotopy perturbation method Fokker- Planck equation, Int. Math. Forum, 3(19)(2008), 945-954.

M. Caputo, Elasticit'a e dissipazione, Zanichelli, Bologma, (1969).

V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl., 316(2)(2006), 753-763.

M. Garg, P. Manohar, Analytical solution of space-time fractional Fokker-Planck equations by generalized differential transform method, Le Mathematiche, 66(2)(2011), 91-101.

J. H. He and X. H.Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Solitons Fractals 29(1)(2006), 108-113.

G. Jumarie, Fractional Brownian motions via random walk in the complex plane and via fractional derivative, comparison and further results on their Fokker- Planck equations. Chaos Solitons Fractals 22(4)(2004) 907-925.

Y. Kamitani and I. Matsuba, Self-similar characteristics of neural networks based on Fokker-Planck equation, Chaos Solitons Fractals 20(2)(2004) 329-335.

M. Kumar, and V. Daftardar-Gejji, Exact solutions of fractional partial differential equations by Sumudu transform iterative method, Fractional Calculus and Fractional Differential Equations, Birkhuser, Singapore, (2018), 157180.

S. Kumar, Numerical computation of time-fractional fokker-planck equation arising in solid state physics and circuit theory, Zeitschrift fur Naturforschung A, 68(12)(2013), 777-784.

Y. Liu, Approximate solutions of fractional nonlinear equations using homotopy perturbation transformation method, Abstract and Applied Analysis, Hindawi, vol. 2012, Article ID 752869, 14 pages, (2012).

$[15]$ Y. Liu and B. Xin, Numerical solutions of a fractional predatorprey system, Advances in Difference Equations, (2011), 1-11.

J. Ma and Y. Liu, Exact solutions for a generalized nonlinear fractional Fokker-Planck equation, Nonlinear Analysis: Real World Applications, 11(1)(2010), 515-521.

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley Sons, New York, NY, USA, (1993).

G. M. Mittag-Leffler, Sur la nouvelle fonction $E_alpha(x), C$. R. Acad. Sci. Paris 137, (1903), 554-558.

Z. Odibat and S. Momani, Numerical solution of FokkerPlanck equation with space and time-fractional derivatives, Physics Letters A: General, Atomic and Solid State Physics, 369(5-6)(2007), 349-358.

I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic press, 198(1998).

S. Z. Rida, A. S. Abed-Rady, A. A. M. Arafa and H. R. Abed-Rahim, A Domian Decomposition Sumudu Transform Method for Solving Fractional Nonlinear Equations, Math Sci.Lett. (2016) 39-48

H. Risken, The Fokker-Planck Equation: Method of Solution and Applications, Springer, Berlin, (1989).

J. Sabatier, O. P. Agrawal, and J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, (2007).

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives, Theory and Applications, Gordon and Breach, Yverdon, (1993).

K. Wang, S. Liu, A new sumudu transform iterative method for time-fractional cauchy reaction-diffusion equation. SpringerPlus 5(1), 865, (2016).

G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. and Tech., $24(1)(1993), 35-43$.

Y. Xu, F. Y. Ren, J. R. Liang and W.Y. Qiu, Stretched Gaussian asymptotic behavior for fractional FokkerPlanck equation on fractal structure in external force fields, Chaos Solitons Fractals 20, (2004), 581-586.

L. Yan, Numerical solutions of fractional Fokker- Planck equations using iterative Laplace transform method, $A b$ stract and Applied Analysis, Article ID 465160, (2013).

A. Yiidirim, Analytical approach to Fokker-Planck equation with space- and time fractional derivatives by means of the homotopy perturbation method, Journal of King Saud University, 22(4)(2010), 257-264.

H. M. Younas, M. Mustahsan, T. Manzoor, Salamat, N. and Iqbal, S., Dynamical study of fokker-planck equations by using by using optimal homotopy asymptotic method, Mathematics, 264, 7(3)(2019).

M. Zak, Expectation-based intelligent control, Chaos Solitons Fractals 28, (2006), 616-626.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

R.K. Bairwa, and Karan Singh. “An Efficient Analytical Approach for Solving Fractional Fokker-Planck Equations”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1248-5, doi:10.26637/MJM0803/0092.