Note on fractional integral inequalities using generalized k-fractional integral operator

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0093

Abstract

The aim of this paper is to obtain several fractional integral inequalities involving convex functions by using
generalized k-fractional integral operator.

Keywords:

Generalized k-fractional integral, convex functions and inequalities

Mathematics Subject Classification:

Mathematics
  • Pages: 1259-1265
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

S. Belarbi and Z. Dahmani, On some new fractional integral inequality, J. Inequal. Pure and Appl. Math. Art.86, 10(3), (2009), 1-5.

D. Baleanu, S. D. Purohit and J. C. Prajapati, Integral inequalities involving generalized Erdélyi-Kober fractional integral operators, Open. Math. 14, (2016), 89-99.

V. L. Chinchane, New approach to Minkowski fractional inequalities using generalized $K$-fractional integral operator, Journal of the Indian. Math. Soc., 1-2(85),(2018) $32-41$.

V. L. Chinchane, On Chebyshev type inqualities using generalized $K$-fractional integral operator, Progr. Fract. Differ. Appl., 3(3),(2017) 1-8.

V. L. Chinchane and D. B. Pachpatte, On some Grüsstype fractional inequalities using Saigo fractional integral operator, Journal of Mathematics, Article ID 527910, Vol.2014 (2014), 1-9.

V. L. Chinchane and D. B. Pachpatte, New fractional inequalities involving Saigo fractional integral operator, Math. Sci. Lett., 3(3),(2014) 133-139.

V. L. Chinchane and D. B. Pachpatte, Note on fractional integral inequality involving convex function using Saigo fractional integral, Indian Journal of Mathematics,Vol.1(61),(2019),27-39.

mathrm{Z}$. Dahmani, A note on some new fractional results involving convex functions, Acta Math. Univ. Comenianae, 81(2),(2012), 241-246.

Z. Dahmani, L. Tabharit and S. Taf, New generalisation of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3), (2012), 92-99.

Z. Dahmani and N. Bedjaoui, Some generalized integral inequalities, J. Advan. Res. Appl. Math, 3(4),(2011), 5866.

Z. Dahmani and H. Metakkel El Ard, Generalization of some integral inequalities using Riemann-Liouville operator, Int. J. Open Problem Compt. Math., 4(4), (2011), $40-46$.

A. A. George, Fractional Differentiation Inequalities, Springer Publishing Company, New York, 2009.

M. Houas, Certain weighted integral inequalities involving the fractional hypergeometric operators, Scientia, Series A: Mathematical Science, 27(2016), 87-97.

S. Kilinc and H.Yildirim, Generalized fractional integral inequalities involving Hypergeometic operators, Int. J. Pure Appl. Math., 101(1), (2015), 71-82.

V. Kiryakova, On two Saigo's fractional integral operator in the class of univalent functions, Fract. Calc. Appl. Anal., 9(2),( 2006).

A. R. Prabhakaran and K. Srinivasa Rao, Saigo operator of fractional integration of Hypergeometric functions, Int. J. Pure Appl. Math., 81(5), (2012), 755-763.

S. D. Purohit, R. K. Yadav, On generalized fractional qintegral operator involving the q-Grüss Hypergeometric functions, Bull. Math. Anal., 2(4), (2010), 35-44.

S. D. Purohit and R. K. Raina, Chebyshev type inequalities for the Saigo fractional integral and their q- analogues, J. Math. Inequal., 7(2),(2013), 239-249.

S. D. Purohit and R. K. Raina, Certain fractional integral inequalities involving the Gauss hypergeometric function, Rev. Tec. Ing. Univ. Zulia 37(2), (2014), 167-175.

S. D. Purohit, Faruk Ucar and R. K. Yadav, On fractional integral inequalities and their q-analogues, RevistaTecnocientifica URU, $N^0 6$ Enero-Junio., (2014), 53-66.

R. K. Raina,Solution of Abel-type integral equation involving the Appell hypergeometric function, IntegralTransf. Spec. Funct., 21(7), (2010), 515-522.

M. Saigo, A remark on integral operators involving the Grüss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135-143.

H. Yildirim and Z. Kirtay, Ostrowski inequality for generalized fractional integral and related equalities, Malaya J. Math. 2(3), (2014), 322-329.

S.G.Somko, A.A.Kilbas and O.I.Marichev, Fractional Integral and Derivative Theory and Application, Gordon and Breach, Yverdon, Switzerland, 1993.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Asha B. Nale, Satish K. Panchal, and Vaijanath L. Chinchane. “Note on Fractional Integral Inequalities Using Generalized K-Fractional Integral Operator”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1259-65, doi:10.26637/MJM0803/0093.