Common fixed points in S-metric spaces using EA and CLR-properties

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0095

Abstract

Two common fixed point theorems for two pairs of weakly compatible mappings satisfying EA property and CLR property are proved in S-metric spaces.Further,examples are provided in support of the theorems.

Keywords:

S-metric space, common fixed point, weakly compatibility, E.A.property, CLR property

Mathematics Subject Classification:

Mathematics
  • Prasad Kanchanapally Department of Mathematics,University College of Science, Osmania University, Hyderabad-500007, Telangana, India.
  • V. Naga Raju Department of Mathematics,University College of Science, Osmania University, Hyderabad-500007, Telangana, India.
  • Pages: 1273-1277
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

S. Sedghi, N. Shobe and A. Aliouche, A Generalization Of Fixed Point Theorem In S-Metric Spaces, Math. Vesnik., 64(2012), 258-266.

S. Sedghi and N. V.Dung, Fixed Point Theorems On SMetric Spaces, Math. Vesnik., 66(2014.), 113-124.

M. Imdad, BD. Pant and S. Chauhan, Fixed point theorems in Menger spaces using the $left(mathrm{CLR}_{R T}right)$ property and applications, J. Nonlinear Anal. Optim., 3(2)(2012), $225-$ 237.

M. Aamri and D. EI. Moutawakil, Some New Common Fixed Point Theorems under Strict Contractive Conditions, J. Math. Anal. Appl., 270(2002), 181-188.

G. Jungck and B. E. Rhodes, Fixed Points For Set Valued Functions Without Continuity, Indian J. Pure and Appl. Math., 29(1998), 227-238.

Z. Mustafa, B. Sims, A New Approach To Generalized Metric Spaces, J. Nonlinear and Convex Anal., 7(2006), 289-297.

N. V. Dung, N.T. Hieu, and S.Radojevic, Fixed Point Theorems for g-Monotone Maps on Partially Ordered S-metric spaces, Filomat, 28(9)(2014), 1885-1898.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

Prasad Kanchanapally, and V. Naga Raju. “Common Fixed Points in S-Metric Spaces Using EA and CLR-Properties”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1273-7, doi:10.26637/MJM0803/0095.