Common fixed points in S-metric spaces using EA and CLR-properties
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0095Abstract
Two common fixed point theorems for two pairs of weakly compatible mappings satisfying EA property and CLR property are proved in S-metric spaces.Further,examples are provided in support of the theorems.
Keywords:
S-metric space, common fixed point, weakly compatibility, E.A.property, CLR propertyMathematics Subject Classification:
Mathematics- Pages: 1273-1277
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
S. Sedghi, N. Shobe and A. Aliouche, A Generalization Of Fixed Point Theorem In S-Metric Spaces, Math. Vesnik., 64(2012), 258-266.
S. Sedghi and N. V.Dung, Fixed Point Theorems On SMetric Spaces, Math. Vesnik., 66(2014.), 113-124.
M. Imdad, BD. Pant and S. Chauhan, Fixed point theorems in Menger spaces using the $left(mathrm{CLR}_{R T}right)$ property and applications, J. Nonlinear Anal. Optim., 3(2)(2012), $225-$ 237.
M. Aamri and D. EI. Moutawakil, Some New Common Fixed Point Theorems under Strict Contractive Conditions, J. Math. Anal. Appl., 270(2002), 181-188.
G. Jungck and B. E. Rhodes, Fixed Points For Set Valued Functions Without Continuity, Indian J. Pure and Appl. Math., 29(1998), 227-238.
Z. Mustafa, B. Sims, A New Approach To Generalized Metric Spaces, J. Nonlinear and Convex Anal., 7(2006), 289-297.
N. V. Dung, N.T. Hieu, and S.Radojevic, Fixed Point Theorems for g-Monotone Maps on Partially Ordered S-metric spaces, Filomat, 28(9)(2014), 1885-1898.
- NA
Similar Articles
- Asha B. Nale, Satish K. Panchal, Vaijanath L. Chinchane, Note on fractional integral inequalities using generalized k-fractional integral operator , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.