On some intuitionistic fuzzy hyponormal operators

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0096

Abstract

Using the definition of Intuitionistic Fuzzy Hyponormal (IFHN) operator, i.e. \(\mathbb{S} \in I F B(\mathbb{H})\) is an IFHN-operator if \(\mathcal{P}_{\mu, v}\left(\mathbb{S}^* x, u\right) \leq \mathcal{P}_{\mu, v}(\mathbb{S} x, u), \forall x \in \mathbb{H}\) or equivalently \(\mathbb{S}^* \mathbb{S}-\mathbb{S S}^* \geq 0\), we investigate certain properties of IFHN-operators on an IFH-space. The definition of intuitionistic fuzzy class \((N)\) of operators and some spectral properties are introduced. Also, a few theorems are discussed in detail.

Keywords:

Intuitionistic fuzzy Banach space, Intuitionistic Fuzzy Hilbert (IFH) space, Intuitionistic Fuzzy Normal Operator (IFN-operator), Intuitionistic Fuzzy Hyponormal Operator (IFHN-operator), Intuitionistic Fuzzy Class (N)

Mathematics Subject Classification:

Mathematics
  • A. Radharamani Department of Mathematics, Chikkanna Government Arts College, Tirupur-641602, Tamil Nadu, India.
  • S. Maheswari Department of Mathematics, Tiruppur Kumaran College for Women, Tirupur-641687, Tamil Nadu, India.
  • Pages: 1278-1283
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

A. Radharamani, S. Maheswari and A. Brindha, Intuitionistic fuzzy Hilbert space and some properties, Inter. J. Sci. Res. $-(J E N), 8(9)(2018), 15-21$.

A. Radharamani and S. Maheswari, Intuitionistic Fuzzy adjoint & Intuitionistic fuzzy self-adjoint operators in Intuitionistic fuzzy Hilbert space, Inter. J. Research and Analytical Reviews (IJRAR), 5(4)(2018), 248-251.

A. Radharamani and S. Maheswari, Intuitionistic Fuzzy Normal Operator on IFH-space, International Journal of Recent Technology and Engineering(IJRTE), 9(1)(2020), 1920-1923.

A. Radharamani, and S. Maheswari, Intuitionistic Fuzzy Unitary Operator on Intuitionistic Fuzzy Hilbert Space, Malaya Journal of Matematik (MJM), 8(3)(2020), 782786.

A. Radharamani et al., Intuitionistic Fuzzy Hyponormal Operator in IFH-Space, Inter. J. Sci. Res. - (JEN), $10(6)(2020), 7-13$.

M.Goudarzi et al., Intuitionistic fuzzy Inner Product space, Chaos Solitons & Fractals, (41)(2009), 11051112.

J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Sol. Fract., Vol. 22, 2004, 1039-1046.

G. F. Simmons, Introduction to Topology and Modern Analysis, New Delhi: Tata Mc Graw-Hill, (1963).

Balmohan V Limaye, Functional Analysis, New Delhi: New Age International. 1996.

R. Saadati & J. H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos solitons & fractals, 27(2)(2006), 331-344.

K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1)(1986), 87-96.

P. Majumdar and S. K. Samanta, On intuitionistic fuzzy normed linear spaces, Far East Journal of Mathematics, $(1)(2007), 3-4$.

P. Majumdar and S. K. Samanta, On Intuitionistic fuzzy Inner Product Spaces, Journal of fuzzy Mathematics, $19(1)(2011), 115-124$.

S. Mukherjee and T. Bag, Some properties of fuzzy Hilbert spaces, Int. Jr. of Mat and Sci Comp, 1(2)(2010), 55.

M. Goudarzi and S. M. Vaezpour, On the definition of fuzzy Hilbert space and its application, J. Nonlinear Sci. Applications, 2(1)(2009), 46-59.

Rajkumar Pradhan and Madhumangal pal, Intuitionistic fuzzy linear transformations, Annals of Pure and Appl. Math., , 1(1)(2012), 57-68.

T. K Samanta and Iqbal H. Jebril, Finite dimensional intuitionistic fuzzy normed linear space, International Journal of Open Problems in Computer Science and Mathematics, 2(4)(2009), 574-591.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

A. Radharamani, and S. Maheswari. “On Some Intuitionistic Fuzzy Hyponormal Operators”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1278-83, doi:10.26637/MJM0803/0096.