A type of strongly regular gamma rings

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0097

Abstract

In this study, using Yuan and Lee's [13] explanation of fuzzy group founded on fuzzy binary operation and Aktas and Cagman [2] definition of fuzzy ring, we give a innovative caring of explanation to \((A: B)\). The idea of fuzzy regular and fuzzy left strongly regular are presented and we make a hypothetical learning on their elementary belongings equivalent to those of ordinary rings. We have presented that if \((R, G, H)\) is strongly regular, then for any a in \(R\), left annihilator of " \(a\) " is an ideal.

Keywords:

Ring theory, regular rings, ideal in associative algebras, fuzzy algebraic structures

Mathematics Subject Classification:

Mathematics
  • D. Kanthakumar Research and Department Centre, Bharathiar University, Coimbatore 641046, India.
  • P. Nandakumar Department of Mathematics, Perunthalaivar Kamarajar Institute of Engineering and Technology, Karaikal, 609203, India.
  • S. Narayanamoorthy Department of Mathematics, Bharathiar University, Coimbatore-641046, India.
  • Pages: 1284-1290
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

H. Aktas, Successive Sums in Smooth Groups and Smooth Cyclic Group, Utilitas Math., 17(2006), 23-31.

H. Aktas, and N. Cagman, A Type of Fuzzy Ring, Arch. Math. Logic, 46(3-4)(2007), 117-165.

W. E. Barnes, On the $Gamma$ - rings of Nobusawa, Pasific $J$. Math., 18(1966), 411-422.

M. Demirci, Smooth Groups, Fuzzy Sets and Systems, 117(2001), 431-437.

M. Demirci, Smooth Subgroups and Smooth Homomorphisms, Fuzzy Sets and Systems, 117(2001), 439-446.

A. O. Mehmet, B. J. Young, and Y. Hasret, A New View of Fuzzy Gamma Rings, Hacettepe Journal of Mathematics and Statistics, 19(3)(2010), 365-378.

S. Kyuno, On Prime Gamma Rings, Pacific J. Math 75(1)(1978), 185-190.

P. Nandakumar, P. Dheena, and D. Kanthakumar, A Typ of Strongly Regular Semirings, The Journal of Fuzzy Math ematics, 27(2)(2019), 487-498.

N. Nobusawa, On Generalization of the Ring Theory, Os aka J. Math., (1978), 185-190.

A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl., 35(1971), 512-517.

B. Sambathkumar, P. Nandakumar and P. Dheena, A Type of Strongly Regular Rings, Journal of Intelligent and Fuzzy System, 30(1)(2016), 437-442.

E. Yetkin, N. Olgun, Direct Product of Fuzzy Groups and Fuzzy Rings, International Mathematical Forum, 6(21)(2011), 1005-1015.

X. Yuan, E. S. Lee, Fuzzy Group Based on Fuzzy Binary Operation, Comput. Math. Appl., 47(2004), 631-641.

L. A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965), 338-353.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

D. Kanthakumar, P. Nandakumar, and S. Narayanamoorthy. “A Type of Strongly Regular Gamma Rings”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1284-90, doi:10.26637/MJM0803/0097.