Some new oscillation criteria of third-order half-linear neutral difference equations

Downloads

DOI:

https://doi.org/10.26637/MJM0803/0100

Abstract

In this article, we introduce the oscillation of all solutions of third-order half-linear neutral difference equation(OSTOHLDE)
$$
\Delta\left(g(n)(\Delta(h(n) \Delta z(n)))^\alpha\right)+f(n) y^\alpha(n+1)=0,
$$
where \(z(n)=y(n)+e(n) y(n-k)\) and \(\alpha\) is a ratio of odd positive integers(PI). Our results are new and complement to the existing ones.

Keywords:

Third-order, half-linear difference equation(DE), neutral, oscillation

Mathematics Subject Classification:

Mathematics
  • T. Gopal Department of Mathematics, Periyar University, Salem-636011, Tamil Nadu, India.
  • G. Ayyappan Department of Mathematics, Periyar University College of Arts and Science, Pappireddipatti -636905, Tamil Nadu, India.
  • R. Arul Department of Mathematics, Kandaswami Kandar’s College, Velur-638182, Tamil Nadu, India.
  • Pages: 1301-1305
  • Date Published: 01-07-2020
  • Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)

R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 2000.

R.P. Agarwal, M. Bohner, S.R. Grace and D. O'Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005.

S.R. Grace, R.P. Agarwal and J.R. Graef, Oscillation criteria for certain third-order nonlinear difference equation, Appl. Anal. Discrete Math., 3(2009), 27-38.

S.R. Grace, Oscillatory behavior of third-order nonlinear difference equations with a nonlinear nonpositive neutral term, Mediterr. J. Math., (2019) 16:128.

I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendan Press, Oxford, 1991.

S. Jaikumar, K.Alagesan and G.Ayyappan, Oscillation of nonlinear third-order delay difference equations with unbounded neutral coefficients, J. Inf. Comput. Sci., 9(2019), 902-910.

G.Ladas and C.Qian, Comparison results and linearized oscillations for higher order difference equations, Int. J. Math. Math. Sci., 15(1992), 129-142.

S.H. Sakar, Oscillation and asymptotic behavior of thirdorder nonlinear neutral delay difference equations, $D y$ nam. Systems. Appl., 15(2006), 549-568.

S. Selvarangam, M. Madhan, E. Thandapani and S. Pinelas, Improved oscillation theorems for third-order neutral type difference equations, Elec. J. Differential Equ., 2017(2017), No.90, pp. 1-13.

E. Thandapani, S. Pandian and R.K. Balasubramaniam, Oscillatory behavior of solutions of third-order quasilinear delay difference equations, Stud. Univ. Zilina, Math. Ser., 19(2005), 65-78.

E.Thandapani, M. Vijaya and T. Li, On the oscillation of third order half-linear neutral type difference equations, Electron. J. Qual. Theory Differ. Equ., 76(2011), 1-13.

E.Thandapani and S.Selvarangam, Oscillation of second order Emden-Fowler type neutral difference equations, Dynam. Cont. Disc. Impul. Sys. Ser. A: Math. Anal., 19(2012), 453-469.

E. Thandapani and S. Selvarangam, Oscillation of thirdorder half-linear neutral difference equations, Math. Bohemica, 138(2013), 87-104.

D.M. Wang and Z.T. Xu, Oscillation of second-order quasilinear neutral delay difference equations, Acta Math. Appl. Sinica, 27(2011), 93-104.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2020

How to Cite

T. Gopal, G. Ayyappan, and R. Arul. “Some New Oscillation Criteria of Third-Order Half-Linear Neutral Difference Equations”. Malaya Journal of Matematik, vol. 8, no. 03, July 2020, pp. 1301-5, doi:10.26637/MJM0803/0100.