The open hub number of a graph
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0006Abstract
Let \(G=(V, E)\) be a connected graph. A subset \(H\) of \(V\) is called a hub set of \(G\) if for any two distinct vertices \(u, v \in V-H\), there exists a \(u-v\) path \(P\) in \(G\) such that all the internal vertices of \(P\) are in \(\mathrm{H}\). A hub set \(H\) of \(V\) is called an open hub set if the induced sub graph \(\langle H\rangle\) has no isolated vertices. The minimum cardinality of an open hub set of \(G\) is called the open hub number of \(G\) and is denoted by \(h_O(G)\). In this paper, we present several basic results on the open hub number.
Keywords:
Open hub set, Open hub numberMathematics Subject Classification:
Matheatics- Pages: 1375-1377
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
F. Harary, Graph Theory, Addison-Wesley Pub House, 1963.
C. Gary and Z. Ping, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
W. Matthew, The hub number graphs, International Journal of Mathematics and Computer Science, 1(2006), $117-$ 124.
W.H. Teresa, T.H. Stephan and J.S. Peter, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, 2008.
G. Tracy, A.H. Stephan and J. Adam, The hub number of a graph, Information Processing Letters, 108(2008), 226-228.
- NA
Similar Articles
- V. Subprabha, P. T. Infant Vijula, N. Durga Devi, A new closure operator via $(1,2) S_\beta$-open sets in bi-topological spaces , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- K. Kamala, V. Seenivasan , \(\beta\)-Baire space in fuzzy soft topological spaces , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- R. Thangappan, On $\beta^*$-open and $\beta^*$-closed sets in fuzzy topological space , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- A. Punitha Tharani, H. Sujitha, On \(g^* \beta\)-compactness and \(g^* \beta\)-connectedness in topological spaces , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- V. Subprabha, P. T. Infant Vijula, N. Durga Devi, New forms of open and closed sets using $(1,2) S_\beta$-open sets in bitopological spaces , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- P. Sathishmohan, V. Rajendran, C. Vignesh Kumar, P.K. Dhanasekaran, On nano semi pre neighbourhoods in nano topological spaces , Malaya Journal of Matematik: Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
- A. Hari Ganesh, K. Prabhakaran, G. Sivakumar, Solutions of ternary quadratic Diophantine equations \(x^2+y^2 \pm \dot{\lambda} y=z^2\) , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
- T. G. Thange, S. S. Jadhav, On certain subclass of normalized analytic function associated with Rusal differential operator , Malaya Journal of Matematik: Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
- A. M. A. El-Sayed, Abd El-Salam Sh. A., Solvability of some fractional-order three point boundary value problems , Malaya Journal of Matematik: Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
- T. Rajesh Kannan, S. Chandrasekar, Neutrosophic \(P R E-\alpha, S E M I-\alpha\) and \(P R E-\beta\) irresolute open and closed mappings in neutrosophic topological spaces , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.