The open hub number of a graph
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0006Abstract
Let \(G=(V, E)\) be a connected graph. A subset \(H\) of \(V\) is called a hub set of \(G\) if for any two distinct vertices \(u, v \in V-H\), there exists a \(u-v\) path \(P\) in \(G\) such that all the internal vertices of \(P\) are in \(\mathrm{H}\). A hub set \(H\) of \(V\) is called an open hub set if the induced sub graph \(\langle H\rangle\) has no isolated vertices. The minimum cardinality of an open hub set of \(G\) is called the open hub number of \(G\) and is denoted by \(h_O(G)\). In this paper, we present several basic results on the open hub number.
Keywords:
Open hub set, Open hub numberMathematics Subject Classification:
Matheatics- Pages: 1375-1377
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
F. Harary, Graph Theory, Addison-Wesley Pub House, 1963.
C. Gary and Z. Ping, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
W. Matthew, The hub number graphs, International Journal of Mathematics and Computer Science, 1(2006), $117-$ 124.
W.H. Teresa, T.H. Stephan and J.S. Peter, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, 2008.
G. Tracy, A.H. Stephan and J. Adam, The hub number of a graph, Information Processing Letters, 108(2008), 226-228.
- NA
Similar Articles
- T. Mani, R. Krishnakumar, D. Dhamodharan, Fixed-point of $(\alpha, \beta, Z)$-contraction mapping under simulation functions in Banach space , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- S. Pinelas, M. Arunkumar, N. Mahesh Kumar, E. Sathya, Stability of general quadratic-cubic-quartic functional equation in quasi beta Banach space via two dissimilar methods , Malaya Journal of Matematik: Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
- Anjali Gupta, C.L. Parihar, Siago’s K-fractional calculus operators , Malaya Journal of Matematik: Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
- M. Arunkumar, E. Sathya, S. Karthikeyan, G. Ganapathy, T. Namachivayam, Stability of system of additive functional equations in various Banach spaces: Classical Hyers methods , Malaya Journal of Matematik: Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
- M. K. Ghosh, \(\beta_\lambda\)-closed spaces , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
- M. Houas, M. Benbachir , Z. Dahmani, Some Results for a Four-Point Boundary Value Problems for a Coupled System Involving Caputo Derivatives , Malaya Journal of Matematik: Vol. 3 No. 01 (2015): Malaya Journal of Matematik (MJM)
- S. Sivakumar, T. Ramanathan, Group action on contra semi open map and almost contra \(\beta\)-open mapping , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- Tedjani Hadj Ammar, Khezzani Rimi, A frictionless contact problem for elastic-visco- plastic materials with adhesion and thermal effects , Malaya Journal of Matematik: Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
- John M. Rassias, M. Arunkumar, S. Ramamoorthi , S. Hemalatha, Ulam - Hyers stability of a 2- variable AC - mixed type functional equation in quasi - beta normed spaces: direct and fixed point methods , Malaya Journal of Matematik: Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
- B. Kamaraj, R. Vasuki , Oscillation criteria for nonlinear difference equations with superlinear neutral term , Malaya Journal of Matematik: Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.