The open hub number of a graph
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0006Abstract
Let \(G=(V, E)\) be a connected graph. A subset \(H\) of \(V\) is called a hub set of \(G\) if for any two distinct vertices \(u, v \in V-H\), there exists a \(u-v\) path \(P\) in \(G\) such that all the internal vertices of \(P\) are in \(\mathrm{H}\). A hub set \(H\) of \(V\) is called an open hub set if the induced sub graph \(\langle H\rangle\) has no isolated vertices. The minimum cardinality of an open hub set of \(G\) is called the open hub number of \(G\) and is denoted by \(h_O(G)\). In this paper, we present several basic results on the open hub number.
Keywords:
Open hub set, Open hub numberMathematics Subject Classification:
Matheatics- Pages: 1375-1377
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
F. Harary, Graph Theory, Addison-Wesley Pub House, 1963.
C. Gary and Z. Ping, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
W. Matthew, The hub number graphs, International Journal of Mathematics and Computer Science, 1(2006), $117-$ 124.
W.H. Teresa, T.H. Stephan and J.S. Peter, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, 2008.
G. Tracy, A.H. Stephan and J. Adam, The hub number of a graph, Information Processing Letters, 108(2008), 226-228.
- NA
Similar Articles
- Anju Devi, Manjeet Jakhar, Analytic solution of fractional order differential equation arising in RLC electrical circuit , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
- Kamel Brahim, Yosr sidomou, Some inequalities for the \(q,k\)-Gamma and Beta functions , Malaya Journal of Matematik: Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)
- A. M. A. El-Sayed, Al-Issa, Sh. M, Existence of continuous solutions for nonlinear functional differential and integral inclusions , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
- A. Devika, R. Vani, Min-Max $\pi g^* \beta$-continuous and Max-Min $\pi g^* \beta$-continuous functions in topological spaces , Malaya Journal of Matematik: Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)
- Zanyar A. Ameen, On several classes of contra continuity , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- TIMOTHY OLOYEDE OPOOLA, EZEKIEL ABIODUN OYEKAN, SEYI DEBORAH OLUWASEGUN, PETER OLUWAFEMI ADEPOJU, New subfamilies of univalent functions defined by Opoola differential operator and connected with modified Sigmoid function , Malaya Journal of Matematik: Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
- Govindasamy Ayyappan, Gunasekaran Nithyakala, Oscillation of second order nonlinear difference equations with super-linear neutral term , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
- Ethiraju Thandapani, Renu Rama, Oscillation results for third order nonlinear neutral differential equations of mixed type , Malaya Journal of Matematik: Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)
- G. Thangaraj, S. Lokeshwari, Fuzzy resolvable sets and fuzzy hyperconnected spaces , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
- T.V. Sudharsan, S.P. Vijayalakshmi, B. Adolf Stephen, Third Hankel determinant for a subclass of analytic univalent functions , Malaya Journal of Matematik: Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.