The open hub number of a graph
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0006Abstract
Let \(G=(V, E)\) be a connected graph. A subset \(H\) of \(V\) is called a hub set of \(G\) if for any two distinct vertices \(u, v \in V-H\), there exists a \(u-v\) path \(P\) in \(G\) such that all the internal vertices of \(P\) are in \(\mathrm{H}\). A hub set \(H\) of \(V\) is called an open hub set if the induced sub graph \(\langle H\rangle\) has no isolated vertices. The minimum cardinality of an open hub set of \(G\) is called the open hub number of \(G\) and is denoted by \(h_O(G)\). In this paper, we present several basic results on the open hub number.
Keywords:
Open hub set, Open hub numberMathematics Subject Classification:
Matheatics- Pages: 1375-1377
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
F. Harary, Graph Theory, Addison-Wesley Pub House, 1963.
C. Gary and Z. Ping, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
W. Matthew, The hub number graphs, International Journal of Mathematics and Computer Science, 1(2006), $117-$ 124.
W.H. Teresa, T.H. Stephan and J.S. Peter, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, 2008.
G. Tracy, A.H. Stephan and J. Adam, The hub number of a graph, Information Processing Letters, 108(2008), 226-228.
- NA
Similar Articles
- E. Hatir, Operation approaches on decompositions of γ−continuous function , Malaya Journal of Matematik: Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
- V. Govindhan, S. Murthy, G. Gokila, Fixed points and stability of lcosic functional equation in quasi- $\beta$-normed spaces , Malaya Journal of Matematik: Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
- G. Hari Siva Annam, N. Raksha Ben, \text { Some new open sets in } \mu_N \text { topological space } , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- G. Murugusundaramoorthy, T. Janani, Meromorphic parabolic starlike functions with a fixed point involving Srivastava-Attiya operator , Malaya Journal of Matematik: Vol. 2 No. 02 (2014): Malaya Journal of Matematik (MJM)
- P. Kandan, A. Joseph Kennedy, Reverse Zagreb indices of corona product of graphs , Malaya Journal of Matematik: Vol. 6 No. 04 (2018): Malaya Journal of Matematik (MJM)
- V. Kamal Nasir, V. P. Beenu, Unbalanced transportation problem with pentagonal intuitionsitic fuzzy number solved using ambiguity index , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- Chanda Purushwani, Poonam Sinha, Propagation of disease from exotic infected predator to native population-A prey predator model , Malaya Journal of Matematik: Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)
- V. Pankajam, S. Balamanthra, Half separation axioms in generalized topological spaces , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
- Sunday Oluwafemi Olatunji, Emmanuel Jesuyon Dansu, Coefficient estimates for Bazileviˇc Ma-Minda functions in the space of sigmoid function , Malaya Journal of Matematik: Vol. 4 No. 03 (2016): Malaya Journal of Matematik (MJM)
- J. Jasmine Elizabeth, G. Hari Siva Annam, Some notions on nano binary continuous , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.