Planarity of a unit graph part -III \(|Max (R)| \geq 3\) case
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0013Abstract
The rings considered in this article are commutative with identity \(1 \neq 0\). Recall that the unit graph of a ring \(R\) is a simple undirected graph whose vertex set is the set of all elements of the ring \(R\) and two distinct vertices \(x, y\) are adjacent in this graph if and only if \(x+y \in U(R)\) where \(U(R)\) is the set of all unit elements of ring \(R\). We denote this graph by \(U G(R)\). In this article we classified rings \(R\) with \(|\operatorname{Max}(R)| \geq 3\) such that \(U G(R)\) is planar.
Keywords:
Planar graph, \(\left(K u_1^*\right)\) , \(\left(K u_2^*\right)\)Mathematics Subject Classification:
mathematics- Pages: 1413-1416
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
S. Akbari, B. Miraftar and R. Nikandish, A note on comaximal ideal graph of commutative rings, arxiv, 2013.
N. Ashrafi, H.R. Mainmani, M.R. Pournaki and S. Yassemi, Unit graph associated with rings, Comm. Algebra, 38(2010), 2851-2871.
M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley publishing Company, 1969.
R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer-Verlag, New York, 2000.
N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India Private Limited, New Delhi, 1994.
M.I. Jinnah and S.C. Mathew, When is the comaximal graph split?, Comm. Algebra 40(7)(2012), 2400-2404.
H.R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319(2008), 1801-1808.
S.M. Moconja and Z.Z. Petrovic, On the structure of comaximal graphs of commutative rings with identity, Bull. Aust. Math. Soc., 83(2011), 11-21.
J. Parejiya, S. Patat and P. Vadhel, Planarity of unit graph Planarity Part $-I$ Local Case, Malaya Journal of Matematik, 8(3)(2020), 1155-1157.
J. Parejiya, P. Vadhel and S. Patat, Planarity of unit graph Planarity Part $-I$ Local Case, Malaya Journal of Matematik, $8(3)(2020), 1162-1170$.
K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull., 57(2)(2014), 413-423.
P.K. Sharma and S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, 176(1995), 124-127.
S. Visweswaran and Jaydeep Parejiya, When is the complement of the comaximal graph of a commutative ring planar?, ISRN Algebra, 2014 (2014), 8 pages.
M.Ye and T.Wu, Comaximal ideal Graphs of commutative rings, J. Algebra Appl., 6(2012), DOI : $10.1142 / S 0219498812501149$.
- NA
Similar Articles
- Amele TA¨IEB, Sara BOUMESSAOUD, On multidimensional fractional Langevin equations in terms of Caputo derivatives , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.