Periodic solutions of almost linear Volterra integro-dynamic systems

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0015

Abstract

In this paper, we use Krasnoselskii's fixed point theorem to establish new results on the existence of periodic solutions for the almost linear Volterra integro-dynamic system on periodic time scales of the form
$$
\left\{\begin{array}{l}
x^{\Delta}(t)=a(t) p(x(t))+\int_{-\infty}^t C(t, s) h(y(s)) \Delta s+e(t) \\
y^{\Delta}(t)=b(t) q(y(t))+\int_{-\infty}^t D(t, s) g(x(s)) \Delta s+f(t)
\end{array}\right.
$$

Keywords:

Volterra integro-dynamic systems, time scales, Krasnoselskii’s fixed point theorem, periodic solutions

Mathematics Subject Classification:

Mathematics
  • Pages: 1427-1433
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

M. Adivar, H. C. Koyuncuoglu, Y. N. Raffoul, Classification of positive solutions of nonlinear systems of Volterra integro-dynamic equations on time scales, Commun. Appl. Anal., 16(3) (2012), 359-375.

M. Adivar, Y. N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal of Qualitative Theory of Differential Equations, 2009(1) (2009), 1-20.

E. Akin, O. Ozturk, On Volterra integro dynamical systems on time scales, Communications in Applied Analysis, 23(1) (2019), 21-30.

A. Ardjouni, A. Djoudi, Existence of positive periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Malaya Journal of Matematik, 2(1) (2013), 60-67.

A. Ardjouni, A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with functional delay on a time scale, Acta Univ. Palacki. Olomnc., Fac. rer. nat., Mathematica, 52(1) (2013), 5-19.

A. Ardjouni, A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Commun Nonlinear Sci NumerSimulat, 17 (2012), 3061-3069.

A. Ardjouni, A. Djoudi, Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale, Rend. Sem. Mat. Univ. Politec. Torino, 68(4) (2010), $349-359$.

M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser, Boston, 2001.

M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003.

F. Bouchelaghem, A. Ardjouni, A. Djoudi, Existence and stability of positive periodic solutions for delay nonlinear dynamic equations, Nonlinear Studies, 25(1) (2018), 191202.

F. Bouchelaghem, A. Ardjouni, A. Djoudi, Existence of positive solutions of delay dynamic equations, Positivity, $21(4)(2017), 1483-1493$.

F. Bouchelaghem, A. Ardjouni, A. Djoudi, Existence of positive periodic solutions for delay dynamic equations, Proyecciones (Antofagasta), 36(3) (2017), 449-460.

J. A. Cid, G. Propst, M. Tvrdy, On the pumping effect in a pipe/tank flow configuration with friction, Physica $D$ : Nonlinear Phenomena, 273/274 (2014), 28-33.

I. Culakova, L. Hanustiakova, R. Olach, Existence for positive solutions of second-ordre neutral nonlinear differential equations, Applied Mathematics Letters, 22 (2009), $1007-1010$

B. Dorociakova, M. Michalkova, R. Olach, M. Saga, Existence and stability of periodic solution related to valveless pumping, Mathematical Problems in Engineering, 2018 (2018), 1-8.

M. Gouasmia, A. Ardjouni, A. Djoudi, Periodic and nonnegative periodic solutions of nonlinear neutral dynamic equations on a time scale, International Journal of Analysis and Applications, 16(2) (2018), 162-177.

S. Hilger, Ein MasskettenkalkulmitAnwendung auf Zentrumsmanningfaltigkeiten, PhD thesis, Universitat Wurzburg, 1988.

E. R. Kaufmann, Y. N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, $J$. Math. Anal. Appl., 319 (2006) 315-325.

V. Lakshmikantham, S. Sivasundaram, B. Kaymarkcalan, Dynamic systems on measure chains, Kluwer Academic Publishers, Dordrecht, 1996.

Y. N. Raffoul, Periodic solutions of almost linear Volterra integro-dynamic equation on periodic time scales, Canad. Math. Bull., 58(1) (2015), 174-181.

D. R. Smart, Fixed points theorems, Cambridge Univ. Press, Cambridge, UK, 1980.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

Abderrahim Guerfi, and Abdelouaheb Ardjouni. “Periodic Solutions of Almost Linear Volterra Integro-Dynamic Systems”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1427-33, doi:10.26637/MJM0804/0015.