Skew-constacyclic codes over \(\mathscr{R}\)
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0028Abstract
Let \(p\) be an odd prime and \(q=p^m\), where \(m\) is a positive integer. We study the \(\Theta_t\)-cyclic and \(\left(\Theta_t, \lambda\right)\)-cyclic code over a finite commutative non-chain ring \(\mathscr{R}=\mathbb{F}_q[u, v, w] /\left\langle u^2=u, v^2=v, w^2=1, u v=v u=0, u w=w u, w v=v w\right\rangle\), where \(\lambda\) is a unit in \(\mathscr{R}\).
Keywords:
Skew cyclic codes, quasi-cyclic codes, equivalent codes, linear codes, arbitrary lengthsMathematics Subject Classification:
Mathematics- Pages: 1502-1508
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
T. Abualrub, N. Aydin and P. Seneviratne, On $theta$-cyclic codes over $F_2+v F_2$, The Australasian Journal of Combinatorics, 54(2012), 115-126.
M. Ashraf and G. Mohammad, Skew cyclic codes $mathbb{F}_3+$ $v mathbb{F}_3$, Int. J. Inf. Coding Theory, 2(4)(2014), 218-225.
M. Ashraf and G. Mohammad, Skew cyclic codes $mathbb{F}_q+u mathbb{F}_q+v mathbb{F}_q$, Asian-European Journal of Mathematics, $11(5)(2018), 1850072$.
S. Bhardwaj and M. Raka, Skew constacyclic codes over a non-chain ring $mathbb{F}_q[u, v] /langle f(u), g(v), u v-v urangle$, arXiv:1905.12933 [cs.IT], (2019), (pre-print).
W. Bosma and J. Cannon, Handbook of Magma Functions, Univ. of Sydney, 1995.
D. Boucher, W. Geiselmann and F. Ulmer, Skew cyclic codes, Appl. Algebra Eng. Comm., 18(2007), 379-389.
D. Boucher, P. Sole and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., $2(3)(2011), 273-292$.
D. Boucher and F. Ulmer, Coding with skew polynomial rings, J. Symb. Comput., 44(12)(2009), 1644-1656.
A. Dertli and Y. Cengellenmis, Skew cyclic codes over $mathbb{F}_q+u mathbb{F}_q+v mathbb{F}_q+u v mathbb{F}_q$, Journal of Science and Arts, $2(39)(2017), 215-222$.
A. Dertli and Y. Cengellenmis, On the linear codes over the ring $R_p$, Discrete Mathematics, Algorithms and Applications, 8(2)(2016), 1650036.
J. Gao, F. Ma and F. Fu, Skew constacyclic codes over the ring $mathbb{F}_q+v mathbb{F}_q$, Appl. Comput. Math., 6(3)(2017), 286295.
F. Gursoy, I. Siap and B. Yildiz, Construction of skew cyclic codes over $mathbb{F}_q+v mathbb{F}_q$, Adv. Math. Commun., $8(3)(2014), 313-322$.
Hammons, A. R. Jr., Kumar, P. V., Calderbank, A. R., Sloane, N. J. A. and P. Solè, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Transactions on Information Theory, 40(2)(1994), 301-319.
R. Hill, A First Course in Coding Theory, Oxford Applied Linguistics, Clarendon Press, 1986.
${ }^{[15]} mathrm{H}$. Islam and O. Prakash, Skew cyclic and skew $left(alpha_1+right.$ $left.u alpha_2+v alpha_3+u v alpha_4right)$-constacyclic codes over $mathbb{F}_q+u mathbb{F}_q+$ $v mathbb{F}_q+u v mathbb{F}_q$, Int. J. Inf. Coding Theory, 5(2)(2018), 101116.
H. Islam and O. Prakash, A note on skew constacyclic codes over $mathbb{F}_q+u mathbb{F}_q+v mathbb{F}_q$, Discrete Mathematics, Algorithms and Applications, 11(3)(2019), 1950030.
S. Jitman, S. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain ring, Adv. Math. Commun., 6(2012), 39-63.
J-F. Qian, L-N. Zhang and S-X. Zhu, (1+u) constacyclic and cyclic codes over $mathbb{F}_2+u mathbb{F}_2$, Appl. Math. Lett., $19(8)(2006), 820-823$.
M. Shi, L. Qian, L. Sok, N. Aydin and P. Sole, On constacyclic codes over $mathbb{Z}_4[u] /leftlangle u^2-1rightrangle$ and their Gray images, Finite Fields Appl., 45(2017), 86-95.
T. Yao, M. Shi and P. Sole, On Skew cyclic codes over $mathbb{F}_q+u mathbb{F}_q+v mathbb{F}_q+u v mathbb{F}_q$, J. Algebra Comb. Discrete Struct. Appl., 2(3)(2015), 163-168.
I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory, $2(2011), 10-20$.
${ }^{[22]} mathrm{H}$. Yu, S. Zhu and X. Kai, $(1-u v)$-constacyclic codes over $mathbb{F}_p+u mathbb{F}_p+v mathbb{F}_p+u v mathbb{F}_p$, J. Syst. Sci. Complex, 27(5)(2014), 811-816.
S. Zhu, Y. Wang and M. Shi Some results on cyclic codes over $mathbb{F}_2+u mathbb{F}_2$, IEEE Trans. Inform. Theory, 56(4)(2010), 1680-1684.
X. Zheng and B. Kong, Cyclic codes and $lambda_1+lambda_2 u+$ $lambda_3 v+lambda_4 u v$-constacyclic codes over $mathbb{F}_p+u mathbb{F}_p+v mathbb{F}_p+$ $u v mathbb{F}_p$, Adv. Math. Commun., 306(2017), 86-91.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.