On vertex integer-magic spectra of Caterpillar graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0035Abstract
Consider any graph \(G=(V(G), E(G))\) and \(k\) be any positive integer. Then a graph \(G\) is said to be \(\mathbb{Z}_k\)-vertex magic graph if there exist a map \(l: V(G) \longrightarrow \mathbb{Z}_k-\{0\}\) such that for any vertex \(v \in V(G)\), sum of the labels of vertices in the open neighborhood of \(v\) is a constant. ie, \(\omega(v)=\sum_{u \in N(v)} l(u)=\mu, \forall v \in V(G)\). The set \(\operatorname{VIM}(G)=\left\{k \in \mathbb{Z}^{+} \mid \mathrm{G}\right.\) is \(\mathbb{Z}_k\) - vertex magic \(\}\) is called vertex integer magic spectrum. In this paper, we determine VIM of caterpillar, super caterpillar and extended super caterpillar graphs.
Keywords:
Super Caterpillar, Extended Super Caterpillar, vertex integer magic spectrum.Mathematics Subject Classification:
mathematics- Pages: 1543-1546
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Bondy, John Adrian, and Uppaluri Siva Ramachandra Murty, Graph Theory with Applications, Vol. 290. London: Macmillan, 1976.
Herstein, I.N., Topics in Algebra, John Wiley & Sons, 2006.
M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B, 17(3)(1974), 205-217.
M. Doob, Characterizations of regular magic graphs, Journal of Combinatorial Theory, Series B, 25(1)(1978), 94-104.
S.-M. Lee, A. N.-T. Lee, H. Sun, I. Wen, On the integermagic spectra of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 42(2002), 77-86.
M. Kong, S.-M. Lee, H. S. Sun, On magic strength of graph, Ars Combinatoria, 45(1997), 193-200.
S.-M. Lee, F. Saba, G. C. Sun, Magic strength of the kth power of paths, CongressusNumerantium, (1993), 177-177.
E. Salehi, Zero-sum magic graphs and their null sets, Ars Combinatoria, 82(2007), 41-54.
E. Salehi, P. Bennett, On integer-magic spectra of caterpillars, Journal of Combinatorial Mathematics and Combinatorial Computing. 61(2007), 65-72.
E. Salehi, P. Bennett, Integer-magic spectra of trees of diameter Five, Journal of Combinatorial Mathematics and Combinatorial Computing, 66(2008), 105-111.
S.-M. Lee, E. Salehi, Integer-magic spectra of amalgamations of stars and cycles, Ars Combinatoria 67 (2003) $199-212$.
N. Kamatchi, K. Paramasivam, A. Prajeesh, K. Muhammed Sabeel, S. Arumugam, On group vertex magic graphs, AKCE International Journal of Graphs and Combinatorics, (2020), 1-5.
M. Hossain, M. Aziz, M. Al, M. Kaykobad, et al., New classes of graceful trees, Journal of Discrete Mathematics, 2014(2014).
F. Smarandache, Algorithms for Solving Linear Congruences and Systems of Linear Congruences, Infinite Study. 1987.
- NA
Similar Articles
- N. Elumalai, R. Muthamizh Selvi, Double Mersenne number in maximum and minimum matrices , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.