On vertex integer-magic spectra of Caterpillar graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0035

Abstract

Consider any graph \(G=(V(G), E(G))\) and \(k\) be any positive integer. Then a graph \(G\) is said to be \(\mathbb{Z}_k\)-vertex magic graph if there exist a map \(l: V(G) \longrightarrow \mathbb{Z}_k-\{0\}\) such that for any vertex \(v \in V(G)\), sum of the labels of vertices in the open neighborhood of \(v\) is a constant. ie, \(\omega(v)=\sum_{u \in N(v)} l(u)=\mu, \forall v \in V(G)\). The set \(\operatorname{VIM}(G)=\left\{k \in \mathbb{Z}^{+} \mid \mathrm{G}\right.\) is \(\mathbb{Z}_k\) - vertex magic \(\}\) is called vertex integer magic spectrum. In this paper, we determine VIM of caterpillar, super caterpillar and extended super caterpillar graphs.

Keywords:

Super Caterpillar, Extended Super Caterpillar, vertex integer magic spectrum.

Mathematics Subject Classification:

mathematics
  • K.R. Asif Navas Department of Mathematics, TKM College of Engineering Kollam-05, Mary Matha Arts and Science College, Mananthavady, Kerala, India.
  • V. Ajitha Department of Mathematics, Mahatma Gandhi College, Iritty-670703, Kerala, India.
  • T.K. Mathew Varkey Department of Mathematics, TKM College of Engineering Kollam-05, Kerala, India.
  • Pages: 1543-1546
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

Bondy, John Adrian, and Uppaluri Siva Ramachandra Murty, Graph Theory with Applications, Vol. 290. London: Macmillan, 1976.

Herstein, I.N., Topics in Algebra, John Wiley & Sons, 2006.

M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B, 17(3)(1974), 205-217.

M. Doob, Characterizations of regular magic graphs, Journal of Combinatorial Theory, Series B, 25(1)(1978), 94-104.

S.-M. Lee, A. N.-T. Lee, H. Sun, I. Wen, On the integermagic spectra of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 42(2002), 77-86.

M. Kong, S.-M. Lee, H. S. Sun, On magic strength of graph, Ars Combinatoria, 45(1997), 193-200.

S.-M. Lee, F. Saba, G. C. Sun, Magic strength of the kth power of paths, CongressusNumerantium, (1993), 177-177.

E. Salehi, Zero-sum magic graphs and their null sets, Ars Combinatoria, 82(2007), 41-54.

E. Salehi, P. Bennett, On integer-magic spectra of caterpillars, Journal of Combinatorial Mathematics and Combinatorial Computing. 61(2007), 65-72.

E. Salehi, P. Bennett, Integer-magic spectra of trees of diameter Five, Journal of Combinatorial Mathematics and Combinatorial Computing, 66(2008), 105-111.

S.-M. Lee, E. Salehi, Integer-magic spectra of amalgamations of stars and cycles, Ars Combinatoria 67 (2003) $199-212$.

N. Kamatchi, K. Paramasivam, A. Prajeesh, K. Muhammed Sabeel, S. Arumugam, On group vertex magic graphs, AKCE International Journal of Graphs and Combinatorics, (2020), 1-5.

M. Hossain, M. Aziz, M. Al, M. Kaykobad, et al., New classes of graceful trees, Journal of Discrete Mathematics, 2014(2014).

F. Smarandache, Algorithms for Solving Linear Congruences and Systems of Linear Congruences, Infinite Study. 1987.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

K.R. Asif Navas, V. Ajitha, and T.K. Mathew Varkey. “On Vertex Integer-Magic Spectra of Caterpillar Graphs”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1543-6, doi:10.26637/MJM0804/0035.