On certain degree based Zagreb and Randi´c indices for cubic tungsten trioxide \([p;q; r]\) nanomultilayer

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0039

Abstract

Topological index is one of the significant tools in chemical graph theory, and is designed to transform a molecular map into a number. Basically, topological index is a single numeric quantity which characterises the entire chemical structure of a compound. Topological indices are crucial relevance to the physicochemical properties of the molecular compounds and also predicting their bioactivity. As an n-type semiconducting metal oxide, cubic tungsten trioxide (hereafter \(\mathrm{c}-\mathrm{WO}_3\) ) nanostructure has been considered as a potential candidate, which offers manifold applications. Therefore, the chemistry of \(\mathrm{c}-\mathrm{WO}_3\) is very important and its interdisciplinary study provides a way to understand the importance of various domains. In this study, we computed certain degree based Zagreb and Randić topological indices for \(\mathrm{c}-W O_3\) nanomultilayer for all values of \(\mathrm{p}, \mathrm{q}\) and \(\mathrm{r}\) by adopting edge partition technique. The computational results are analysed, compared and the general formulas to the indices are obtained.

Keywords:

Topological index, Zagreb, Randi´c,, WO3 nanomultilayer, Molecular graph

Mathematics Subject Classification:

Mathematics
  • M.S. Duraisami PG and Research Department of Physics, Poompuhar College (Autonomous), Melaiyur, Tamil Nadu-609107, India. Affiliated to Bharathidasan University, Tiruchirappalli.
  • K. Parasuraman PG and Research Department of Physics, Poompuhar College (Autonomous), Melaiyur, Tamil Nadu-609107, India. Affiliated to Bharathidasan University, Tiruchirappalli.
  • Pages: 1562-1576
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1983.

V. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

V. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics. Vols. I and II. Wiley-VCH, Weinheim, 2009.

L. H. Hall, L. B. Kier, W. J. Murray, Molecular connectivity II: Relationship to water solubility and boiling point, J. Pharm. Sei, 64(1975), 1974-1977.

Balaban, XXXIV, Five new topological indices for the branching of tree-like graphs, Theor. Chim. Acta, 53(1979), 355-375.

M. Randić, Characterization of molecular branching, $J$. Amer. Chem. Soc, 97(1975), 6609-6615.

C. C. J. Roothaan, R. S. Mulliken, Molecular Orbital Treatment of the Ultraviolet Spectra of Benzene and Borazole, J. Chem. Phys, 16(1948), 118.

I. Gutman, Degree-based topological indices, CroaticaChemica Acta, 4(2), (2013), 351-361.

S. Nikolić , G. Kovaćević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years After, CroaticaChemica Acta, 76(2003), 113-124.

X. Li, Y. Shi, A survey on the Randic index, MATCH, Commun. Math. Comput. Chem, 59(2008), 127-156.

C. Godsil, G. F. Royle, Algebraic Graph Theory vol. 207. Switzerland, AG: Springer Science&Business Media, 2013.

H. Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society, 69(1), $(1947), 17-20$.

C. John, Dearden, The Use of Topological Indices in QSAR and QSPR Modeling. Advance in QSAR Modeling, Challenges and Advances in Computational Chemistry and Physics 24, 2017. https://doi.org./10.1007/978$3-319-56850-8$.

I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total $phi$-electron energy of alternant hydrocarbons, Chemical Physics Letters, 17(4), (1972), 535-538.

Ali Astanesh-Asl, G. H. Fath-Tabar, Computing the first and third Zagreb polynomials of certained product of graphs, Irsnisn Journal of Mathematical Chemistry, 2(2), (2011), 73-78.

G.H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-zagreb index of graph operations, Iranian Journal of Mathematical Chemistry, 4(2011), 213-20.

B. Furtula, I. Gutman, S. Ediz, On difference of zagreb indices, Discrete Appl. Math, 178(2014), 83 - 88.

P. S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index, Int. J. Graph Theory, 1(4), (2013), 116-121.

Akbar Jahanbani, Hajar Shooshtary, Nano-Zagreb Index and Multiplicative Nano-Zagreb Index of Some Graph Operations, International Journal Of Computing Science And Applied Mathematics, 5(1), (2019), 15-22.

M. C. Fansury, Rinurwati, Sum Nano-Zagreb Index of Some Graph Operations, Journal of Physics: Conference Series, 1490 (2020), 1 - 11 .

B. Bollobas, P. Erdos, Graphs of extremal weights, Ars Combin. 50(1998), 225-233.

O. Favaron, M. Mahéo, J. F Saclé, Some eigenvalue properties in graphs (conjectures of graffiti-ii). Discrete Math, 111(1993), 197-220.

F. C. G. Manso, H. S. Júnior, R. E. Bruns, A. F. Rubira, E. C. Muniz, Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons, the fi index, J. Mol. Liq, 165(2012), $125-132$.

Z. Dvorak, B. Lidicky, R. Skrekovski, Randic index and the diameter of a graph, Eur. J.Comb, 32(3), (2011), 434 442.

Y. Hu, X. Li, Y. Shi, T. Xu, Connected $(n, m)$-graphs with minimum and maximum zeroth-order general Randic index, Discrete Appl. Math, 155(2007), 1044-1054.

H. Hua, H. Deng, On unicycle graphs with maximum and minimum zeroth-order general Randic index, J. Math. Chem, 41(2007), 173-181.

X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem, 54(2005), 195-208.

G. Su, L. Xiong, X. Su, G. Li, Maximally edge-connected graphs and zeroth-order general Randic index for $alpha-1 . J$. Comb. Optim, 31(1), (2016), 182-195.

Nazeran Idrees, Muhammad JawwadSaif, Afshan Sadiq, Asia Rauf, Fida Hussain, Topological Indices of HNaphtalenic Nanosheet, Open Chem, 16(2018), 1184 1188.

Martin Bača, JarmilaHorváthová, Martina Mokrišová, Andrea Semaničová-Feňovčíková, AlžbetaSuhányiová, On topological indices of a carbon nanotube network, Canadian Journal of Chemistry, 93(10), (2015), 11571160.

Hafiz Usman Afzal, Tahzeeb Fatima, On Topological Indices of OT $[m, n]$ Octagonal Tillings and TiO2 Nanotubes, Acta Chim. Slov, 66(2019), 435-442.

M. Javaid, M. Jia-Bao Liu, A. Rehman, Shaohui Wang, On the Certain Topological Indices of Titania Nanotube TiO2 $[m, n]$, Z. Naturforsch, 72(7)a, (2017), 647-654.

${ }^{[33]}$ M. Munir, W. Nazeer, S. Rafique, A. R. Nizami, S. M.Kang, Some Computational Aspects of Triangular Boron Nanotubes, Symmetry, 9(6), (2016), 1 -13.

Fei Deng, Xiujun Zhang , Mehdi Alaeiyan, Abid Mehboob, Mohammad Reza Farahani, Topological Indices of the Pent-Heptagonal Nanosheets VC5C7 and HC5C7, Advances in Materials Science and Engineering, 12(2019), $1-12$.

Haidong Zheng, Jian Zhen Ou, Michael S. Strano , Richard B. Kaner, Arnan Mitchell, KouroshKalantarzadeh, Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications, Adv. Funct. Mater, 21(2011), $2175-2196$.

Chang-Mou Wu, Saba Naseem, Min-Hui Chou, JyunHong Wang, Ying-Qi Jian, Recent Advances in TungstenOxide-Based Materials and Their Applications, Front. Mater, 6(49), (2019).

Jijie Zhang, PengZhang, TuoWang, JinlongGong, Monoclinic $W O_3$ nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting, Nano Energy, 11(2015), 189-195.

I. Gutman, B. Ruscic, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals, XII, Acyclic polyenes, $J$. Chem. Phys, 62(1975), 3399-3405.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

M.S. Duraisami, and K. Parasuraman. “On Certain Degree Based Zagreb and Randi´c Indices for Cubic Tungsten Trioxide \([p;q; R]\) Nanomultilayer”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1562-76, doi:10.26637/MJM0804/0039.