On certain degree based Zagreb and Randi´c indices for cubic tungsten trioxide \([p;q; r]\) nanomultilayer
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0039Abstract
Topological index is one of the significant tools in chemical graph theory, and is designed to transform a molecular map into a number. Basically, topological index is a single numeric quantity which characterises the entire chemical structure of a compound. Topological indices are crucial relevance to the physicochemical properties of the molecular compounds and also predicting their bioactivity. As an n-type semiconducting metal oxide, cubic tungsten trioxide (hereafter \(\mathrm{c}-\mathrm{WO}_3\) ) nanostructure has been considered as a potential candidate, which offers manifold applications. Therefore, the chemistry of \(\mathrm{c}-\mathrm{WO}_3\) is very important and its interdisciplinary study provides a way to understand the importance of various domains. In this study, we computed certain degree based Zagreb and Randić topological indices for \(\mathrm{c}-W O_3\) nanomultilayer for all values of \(\mathrm{p}, \mathrm{q}\) and \(\mathrm{r}\) by adopting edge partition technique. The computational results are analysed, compared and the general formulas to the indices are obtained.
Keywords:
Topological index, Zagreb, Randi´c,, WO3 nanomultilayer, Molecular graphMathematics Subject Classification:
Mathematics- Pages: 1562-1576
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1983.
V. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
V. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics. Vols. I and II. Wiley-VCH, Weinheim, 2009.
L. H. Hall, L. B. Kier, W. J. Murray, Molecular connectivity II: Relationship to water solubility and boiling point, J. Pharm. Sei, 64(1975), 1974-1977.
Balaban, XXXIV, Five new topological indices for the branching of tree-like graphs, Theor. Chim. Acta, 53(1979), 355-375.
M. Randić, Characterization of molecular branching, $J$. Amer. Chem. Soc, 97(1975), 6609-6615.
C. C. J. Roothaan, R. S. Mulliken, Molecular Orbital Treatment of the Ultraviolet Spectra of Benzene and Borazole, J. Chem. Phys, 16(1948), 118.
I. Gutman, Degree-based topological indices, CroaticaChemica Acta, 4(2), (2013), 351-361.
S. Nikolić , G. Kovaćević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years After, CroaticaChemica Acta, 76(2003), 113-124.
X. Li, Y. Shi, A survey on the Randic index, MATCH, Commun. Math. Comput. Chem, 59(2008), 127-156.
C. Godsil, G. F. Royle, Algebraic Graph Theory vol. 207. Switzerland, AG: Springer Science&Business Media, 2013.
H. Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society, 69(1), $(1947), 17-20$.
C. John, Dearden, The Use of Topological Indices in QSAR and QSPR Modeling. Advance in QSAR Modeling, Challenges and Advances in Computational Chemistry and Physics 24, 2017. https://doi.org./10.1007/978$3-319-56850-8$.
I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total $phi$-electron energy of alternant hydrocarbons, Chemical Physics Letters, 17(4), (1972), 535-538.
Ali Astanesh-Asl, G. H. Fath-Tabar, Computing the first and third Zagreb polynomials of certained product of graphs, Irsnisn Journal of Mathematical Chemistry, 2(2), (2011), 73-78.
G.H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-zagreb index of graph operations, Iranian Journal of Mathematical Chemistry, 4(2011), 213-20.
B. Furtula, I. Gutman, S. Ediz, On difference of zagreb indices, Discrete Appl. Math, 178(2014), 83 - 88.
P. S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index, Int. J. Graph Theory, 1(4), (2013), 116-121.
Akbar Jahanbani, Hajar Shooshtary, Nano-Zagreb Index and Multiplicative Nano-Zagreb Index of Some Graph Operations, International Journal Of Computing Science And Applied Mathematics, 5(1), (2019), 15-22.
M. C. Fansury, Rinurwati, Sum Nano-Zagreb Index of Some Graph Operations, Journal of Physics: Conference Series, 1490 (2020), 1 - 11 .
B. Bollobas, P. Erdos, Graphs of extremal weights, Ars Combin. 50(1998), 225-233.
O. Favaron, M. Mahéo, J. F Saclé, Some eigenvalue properties in graphs (conjectures of graffiti-ii). Discrete Math, 111(1993), 197-220.
F. C. G. Manso, H. S. Júnior, R. E. Bruns, A. F. Rubira, E. C. Muniz, Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons, the fi index, J. Mol. Liq, 165(2012), $125-132$.
Z. Dvorak, B. Lidicky, R. Skrekovski, Randic index and the diameter of a graph, Eur. J.Comb, 32(3), (2011), 434 442.
Y. Hu, X. Li, Y. Shi, T. Xu, Connected $(n, m)$-graphs with minimum and maximum zeroth-order general Randic index, Discrete Appl. Math, 155(2007), 1044-1054.
H. Hua, H. Deng, On unicycle graphs with maximum and minimum zeroth-order general Randic index, J. Math. Chem, 41(2007), 173-181.
X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem, 54(2005), 195-208.
G. Su, L. Xiong, X. Su, G. Li, Maximally edge-connected graphs and zeroth-order general Randic index for $alpha-1 . J$. Comb. Optim, 31(1), (2016), 182-195.
Nazeran Idrees, Muhammad JawwadSaif, Afshan Sadiq, Asia Rauf, Fida Hussain, Topological Indices of HNaphtalenic Nanosheet, Open Chem, 16(2018), 1184 1188.
Martin Bača, JarmilaHorváthová, Martina Mokrišová, Andrea Semaničová-Feňovčíková, AlžbetaSuhányiová, On topological indices of a carbon nanotube network, Canadian Journal of Chemistry, 93(10), (2015), 11571160.
Hafiz Usman Afzal, Tahzeeb Fatima, On Topological Indices of OT $[m, n]$ Octagonal Tillings and TiO2 Nanotubes, Acta Chim. Slov, 66(2019), 435-442.
M. Javaid, M. Jia-Bao Liu, A. Rehman, Shaohui Wang, On the Certain Topological Indices of Titania Nanotube TiO2 $[m, n]$, Z. Naturforsch, 72(7)a, (2017), 647-654.
${ }^{[33]}$ M. Munir, W. Nazeer, S. Rafique, A. R. Nizami, S. M.Kang, Some Computational Aspects of Triangular Boron Nanotubes, Symmetry, 9(6), (2016), 1 -13.
Fei Deng, Xiujun Zhang , Mehdi Alaeiyan, Abid Mehboob, Mohammad Reza Farahani, Topological Indices of the Pent-Heptagonal Nanosheets VC5C7 and HC5C7, Advances in Materials Science and Engineering, 12(2019), $1-12$.
Haidong Zheng, Jian Zhen Ou, Michael S. Strano , Richard B. Kaner, Arnan Mitchell, KouroshKalantarzadeh, Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications, Adv. Funct. Mater, 21(2011), $2175-2196$.
Chang-Mou Wu, Saba Naseem, Min-Hui Chou, JyunHong Wang, Ying-Qi Jian, Recent Advances in TungstenOxide-Based Materials and Their Applications, Front. Mater, 6(49), (2019).
Jijie Zhang, PengZhang, TuoWang, JinlongGong, Monoclinic $W O_3$ nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting, Nano Energy, 11(2015), 189-195.
I. Gutman, B. Ruscic, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals, XII, Acyclic polyenes, $J$. Chem. Phys, 62(1975), 3399-3405.
- NA
Similar Articles
- Farah Diyab, B. Surender Reddy, Analytic and geometric aspects of Laplace operator on Riemannian manifold , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.