Connected edge Detour global domination number of a graph

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0042

Abstract

In this paper, we introduce the concept of connected edge detour global domination number of a graph is introduced. A subset \(D\) of the vertex set \(V(G)\) of a connected graph \(G\) is called a connected edge detour global dominating set if \(D\) is an edge detour global dominating set and the induced subgraph \(\langle D\rangle\) is connected. The connected edge detour global domination number \(\gamma_{c e d g}(G)\) of \(G\) is the minimum cardinality taken over all connected edge detour global dominating sets in \(\mathrm{G}\). A connected edge detour global dominating set of cardinality \(\gamma_{c e d g}(G)\) is called a \(\gamma_{c e d g}\)-set of \(G\). We determine \(\gamma_{c e d g}(G)\) for some standard and special graphs and its properties are studied.

Keywords:

Edge detour global domination number, connected edge detour global domination number

Mathematics Subject Classification:

Mathematics
  • A. Punitha Tharani Department of Mathematics, St. Mary’s College (Autonomous), Thoothukudi–628001, Tamil Nadu, India.
  • A. Ferdina Research Scholar [Register Number: 19122212092006], Department of Mathematics, St. Mary’s College (Autonomous), Thoothukudi–628001, Tamil Nadu, India.
  • Pages: 1580-1582
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

F. Buckley and F. Harary, Distance in Graphs, AddisonWesley Publishing Company, Redwood City, San Francisco Peninsula, 1990.

G. Chartrand, H. Escuadro and B. Zang, Distance in graph, Taking the long view, AKCE J. Graphs and Combin., 1(1), (2014), 1-13.

G. Chartrand, H. Escuadro and B. Zang, Detour distance in graph, J. Combinmath. Combin Computer, 53(2005), $75-94$.

G. Chartrand, L. Johns and P. Zang, Detour Number of a Graph, Utilitas Mathematics, 64(2003), 97-113.

G. Chartrand, T. W. Haynes, M. A. Henning, and P. Zhang, Detour Domination in Graphs, Ars Combinatoria, (2004), 149-160.

F. Harary, Graph Theory, Addison Wesley Publishing Company Reading Mass, 1972.

T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., NY, 1998.

John Adrian Bondy, Murty U.S.R. Graph Theory, Springer, 2009.

V. R Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, 2012.

A. Mahalakshmi, K. Palani, S. Somasundaram, Edge Detour Domination Number of Graphs, Proceedings of International Conference on Recent Trends in Mathematical Modeling, 6(2016), 135-144.

A. Punitha Tharani and A. Ferdina, Detour Global Domination Number of Some Standard And Special Graphs, International Journal of Advanced Science and Technologv, 29, 185-189.

A. Punitha Tharani and A. Ferdina, Edge Detour Global Domination Number of a Graph, MuktShabd Journal, 9(9)(2020), 137-143.

E. Sampathkumar, The Global Domination Number of a Graph, J. Math.Phys. Sci, 23(1989), 377-385.

J. Vijaya Xavier parthipan, C. Caroline Selvaraj, Connected Detour Domination Number of Some Standard Graphs, Journal of Applied Science and Computations, 5(11), 486-489).

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

A. Punitha Tharani, and A. Ferdina. “Connected Edge Detour Global Domination Number of a Graph”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1580-2, doi:10.26637/MJM0804/0042.