On minimal Hausdorff frames
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0046Abstract
The concept of minimal Hausdorff topological spaces was studied and characterized by M.P. Berri. A compact Hausdorff space is minimal Hausdorff and such spaces are reversible in the sense that every continuous self bijection is a homeomorphism. In this paper we study minimal Hausdorffness in the context of pointfree topology. We introduce the notion of minimal Hausdorff frames and characterize them in terms of convergence of filters in frames. We also study the association between minimal Hausdorff frames and minimal Hausdorff topological spaces. An application is to prove that a minimal Hausdorff frame is a reversible frame in the sense that every order preserving self bijection is a frame isomorphism.
Keywords:
Frame, minimal Hausdorff frame, subframe, sublocale, filter, clustered filter.Mathematics Subject Classification:
General Mathematics- Pages: 1597-1602
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
B. Banaschewski, Variants of Compactness, Unpublished manuscript, Univ.Cape Town, 1999.
M.P. Berri Minimal topological spaces, Proc. Amer. Math. Soc., (1963), 97-105.
M.P. Berri, J.R. Porter and R.M. Stephenson, Jr. A survey of minimal topological spaces, presented at the Proceedings of the Indian Topological Conference in Kanpur, October, 1968, General Topology and its Relation to Modern Analysis and Algebra III, Academic Press, (1970), 93-114.
N. Bourbaki, Topologiegénérale, ActualitésSci.Ind., Hermann, (1951), 858-1142.
C.H. Dowker and D. Papert, Quotient frames and subspaces, Proc. London Math.Soc., 16(1966), 275-296.
C.H. Dowker and D. Strauss, Sums in the Category of frames, Houston J.Math., 3(1977), 7-15.
T. Dube, Balanced and closed-generated filters in frames, Quaest. Math., 25(2002), 73-81.
T. Dube, On Compactness of frames, Algebra University, 51(2005), 411-417.
E. Hewitt, A problem of set theoretic topology, Duke. Math.J., 10(1943), 309-333.
S.S. Hong, Convergence in frames, Kyungpook Math.J., $35(15)(1995), 85-91$.
J.R. Isbell, : Atomless parts of spaces, Math. Scand., $31(1972), 5-32$.
P.N. Jayaprasad and T.P. Johnson, Reversible Frames, Journal of Advanced Studies in Topology, 3(2)(2012), 713.
P.T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics 3, Camb. Univ. Press, 1982.
M. Rajagopalan and A. Wilansky, Reversible topological spaces, J. Austral. Math. Soc., 6(1966), 129-138.
A.S. Parhomeko, $ddot{U}$ bereineindeutigestetigeAbbildungen, Math.Sb., 5(47)(1939), 197-210.
J. Paseka, $T_2$ Seperation Axioms on frames, Acta Univ. Carolin. Math. Phys., 28(1987), 95-98.
J. Paseka and B. S̆ marda, T2 Frames and Almost compact frames, Czech.Math.J. 42(1992), 385-402.
J. Picado and A. Pultr, Frames and Locales: Topology Without Points, Birkhäuser, 2012.
A. Pultr, Some Recent Results of the Theory of Locales, Sixth Prague Topological Symposium, 1986.
A. Ramanathan, A characterization of maximal Hausdorff spaces, J. Indian Math. Soc., 11(1947), 73-80.
A. Ramanathan, Maximal Hausdorff spaces, Proc. Indian Acad. Sci., Sec.A, 26(1947), 31-42.
J. Rosický and B. S̆marda, T1-locales, Math. Proc. Cambridge Philos. Sov., 98(1985), 81-86.
Z. Fengling and D. Strauss, Separated frames, Trans. Tianjin. Univ., 1(4)(1998), 74-77.
- NA
Similar Articles
- Ragi Puthan Veettil, T.V. Ramakrishnan, Introduction to hub polynomial of graphs , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.