On LP-Sasakian manifold admitting a generalized symmetric metric connection
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0047Abstract
In this paper we study certain curvature properties of Lorentzian Para-Sasakian manifold (shortly, LPSM) with respect to the generalized symmetric metric connection. Here we discuss \(\xi\)-concircularly, \(\xi\)-conformally and \(\xi\) projectively flat \(L P S M\) with respect to the generalized symmetric metric connection and obtain various interesting results. Moreover, we study \(L P S M\) with \(\tilde{Z}(\xi, V) . \tilde{S}=0\), where \(\tilde{Z}\) and \(\tilde{S}\) are the concircular curvature tensor and Ricci tensor respectively with respect to the generalized symmetric metric connection.
Keywords:
LP-Sasakian manifold, quarter-symmetric connection, generalized symmetric connection, projectively, conformally flat manifold, \(\eta\)-Einstein manifold, \(\xi\)-concircularlyMathematics Subject Classification:
Mathematics- Pages: 1603-1608
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Bahadir, O. and Chaubey, S. K., Some notes on LPSasakian manifolds with generalized symmetric metric connection, Honam Math. J., (2020) (in press) http:// arxiv/abs/1805.00810 v2.
Chaubey, S. K. and De, U. C., Lorentzian para-Sasakian manifolds admitting a new type of quarter-symmetric non metric $xi$-connection, Inter. Elect. J. Geom., 12(2019), 250259.
Chaubey, S. K. and De, U. C., Charaterization of the Lorentzian para-Sasakian manifolds admiitingquartersymmetric non metric connection, SUT J. Math., 55(2019), 53-67.
Chen,G., Cabrerizo, J. L., Farnandez, L. M. and Farnandez, M., On $xi$-conformally flat contact manifolds, Indian J. Pure and Appl. Math., 28(1997), 725-734.
De, U. C., Matsumoto, K. and Shaikh, A. A., On Lorentzian para-Sasakian manifolds, Rendiconti del SeminarioMatematico di Messina, Serie II, 3(1999), 149-158.
Friedmann, A. and Schouten, J. A., Über die Geometric der halbsymmetrischen :Ubertragung, Math. Z., 21(1924), 211-223.
Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N. S.), 29 (1975), 249-254.
Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N. S.), 29 (1975), 249-254.
Hui, S. K., On $phi$-pseudo symmetric Kenmotsu manifolds with respect to quarter-symmetric metric connection, $A p$ plied Sciences, 15(2013), 71-84.
Matsumoto, K., On Lorentzian paracompact manifolds, Bull. Yamagata, Univ. Natur. Sci., 12(1989), 151-156.
Matsumoto, K. and Mihai, I., On a certain transformation in a Lorentzian para Sasakian manifold, Tensor (N.S.), 47(1988), 189-197.
Mihai, I. and Rosca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis, (1992), 155-169.
Mihai, I., Shaikh, A. A. and De, U. C., On Lorentzian Para-Sasakian manifolds, Rendicorti del Seminario Md, di Messina, Seria, II, (1999).
Murathan, C., Yildiz, A., Arslan, K. and De, U. C., On a class of Lorentzian Para-Sasakian manifolds, Proc. Estonian Acad. Sci. Phys. Math., 55(4)(2006), 210-219.
Özgür, C., Ahmad, M. and Haseeb, A., CR-submanifolds of a Lorentzian para-Sasakian manifold with a semisymmetric metric connection, Hacettepe J. Math. Stat., 39(2010), 489-496.
Perktas, S. Y., Kilic, K. and Tripathi, M. M., On a semi-symmetric metric connection in a Lorentzian paraSasakian manifold, Diff. Geo. Dynm. Sys., 12(2010), 299310.
Prasad, R. and Haseeb, A., On a Lorentzian ParaSasakian manifold with respect to the quarter-symmetric metric connection, Novisad J. Math., 46(2)(2016), 103116.
Shaikh, A. A. and Biswas, S., On LP-Sasakian manifolds, Bull. of the Malaysian Math. Sci. Soc., 27(2004), 17-26.
Shaikh, A. A. and Baishya, K. K., Some results on LPSasakian manifolds, Bull. Math. Soc. Sci. Math. Rommanie, Tome, 97(2006), 197-205.
Shaikh, A. A. and De, U. C., On 3-dimensional LPSasakian manifolds, Soochow J. Math., 26(4) (2000), 359368.
Venkatesha, K. T. P. K. and Bagewadi, C. S., On a Quarter-Symmetric metric connection in a Lorentzian Para-Sasakian manifold, Azerbaijan J. Math., 5(1) (2015), 03-12.
Yano, K. On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl., 15(1970), 1579-1586.
- NA
Similar Articles
- P.N. Jayaprasad, N.M. Madhavan Namboothiri, P.K. Santhosh, Varghese Jacob, On minimal Hausdorff frames , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.