Integral inequalities involving \((k,s)\)− fractional moments of a continuous random variables

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0051

Abstract

In this work, we establish some new integral inequalities of \((k, s)\)-fractional moment of continuous random variables by using the \((k, s)\)-Riemann-Liouville integral operator.

Keywords:

integral inequalities, random variable, \((k, s)\)-Riemann-Liouville integral, \((k, s)\)-fractional moment

Mathematics Subject Classification:

mathematics
  • M. Houas Department of Mathematics, UDBKM, University, Khemis Miliana, Algeria.
  • Pages: 1629-1634
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

A. Akkurt, Z. Kaçar, H. Yildirim. Generalized fractional integral inequalities for continuous random variables. Journal of Probability and Statistics, Vol 2015. Article ID 958980, (2015), 1-7.

N. S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis. Some inequalities for the expectation and variance of a random variable whose PDF is n-time differentiable, $J$. Inequal. Pure Appl. Math., 1(2000), 1-29.

N. S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis. Some inequalities for the dispersion of a random variable whose PDF is defined on a finite interval, J. Inequal. Pure Appl. Math., 2(2001), 1-18.

T. Cacoullos and V. Papathanasiou. On upper boundsfor the variance of functions of random variables, Statist. Probab. Lett., 7(1985), 175-184.

T. Cacoullos and V. Papathanasiou. Caracterizations of distributuons by variance bounds, Math. Statist., 4(1989), 351-356.

Z. Dahmani. Fractional integral inequalities for continuous random variables. Malaya J. Mat., 2(2)(2014), 172179.

Z. Dahmani. New applications of fractional calculus on probabilistic random variables, Acta Math. Univ. Comenianae, 86(2)(2016), 1-9.

Z. Dahmani, A. Khameli, M. bezziou and M.Z. Sarikaya. Some estimations on continuous random variables involving fractional calculus, International Journal of Analysis and Applications, 15(1)(2017), 8-17.

Z. Dahmani, A.E. Bouziane, M. Houas and M.Z. Sarikaya. New $W$-weighted concepts for continuous random variables with applications, Note di. Mat., 37(2017), 23-40.

M. Houas, Z. Dahmani and M. Z. Sarikaya. New integral inequalities for $(r, alpha)$-fractional moments of continuous random variables, Mathematica, 60 (2)(2018), 166-176.

M. Houas, Z. Dahmani. Random variable inequalities involving $(k, s)$-integration, Malaya J. Mat. 5(4)(2017), 641-646.

M. Houas. Some inequalities for $k$-fractional continuous random variables, J. Advan. Res. In Dynamical and Control Systems, 7(4) (2015), 43-50.

M. Houas. Some estimations on continuous random variables for $(k, s)$-fractional integral operators. (Submitted).

P.Kumar. Inequalities involving moments of a continuous random variable defined over a finite interval, Comput. Math. Appl., 48(2004), 257-273.

P. Kumar. The Ostrowski type moment integral inequalities and moment-bounds for continuous random variables, Comput. Math. Appl., 49(2005), 1929-1940.

M. Niezgoda. New bounds for moments of continuous random variables, Comput. Math. Appl., 60 (12) (2010), 3130-3138.

M. Z. Sarikaya, Z. Dahmani, M.E. Kiris and F. Ahmad. $(k, s)$-Riemann-Liouville fractional integral and applications, Hacet J. Math. Stat., 45(1)(2016), 1-13.

M. Z. Sarikaya and A. Karaca. On the $k-$ RiemannLiouville fractional integral and applications, International Journal of Statistics and Mathematics, 1(3)(2014), 033-043.

M. Tomar, S. Maden, E. Set. $(k, s)$-Riemann-Liouville fractional integral inequalities for continuous random variables, Arab. J. Math., 6(2017), 55-63.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

M. Houas. “Integral Inequalities Involving \((k,s)\)− Fractional Moments of a Continuous Random Variables”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1629-34, doi:10.26637/MJM0804/0051.