Integral inequalities involving \((k,s)\)− fractional moments of a continuous random variables
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0051Abstract
In this work, we establish some new integral inequalities of \((k, s)\)-fractional moment of continuous random variables by using the \((k, s)\)-Riemann-Liouville integral operator.
Keywords:
integral inequalities, random variable, \((k, s)\)-Riemann-Liouville integral, \((k, s)\)-fractional momentMathematics Subject Classification:
mathematics- Pages: 1629-1634
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
A. Akkurt, Z. Kaçar, H. Yildirim. Generalized fractional integral inequalities for continuous random variables. Journal of Probability and Statistics, Vol 2015. Article ID 958980, (2015), 1-7.
N. S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis. Some inequalities for the expectation and variance of a random variable whose PDF is n-time differentiable, $J$. Inequal. Pure Appl. Math., 1(2000), 1-29.
N. S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis. Some inequalities for the dispersion of a random variable whose PDF is defined on a finite interval, J. Inequal. Pure Appl. Math., 2(2001), 1-18.
T. Cacoullos and V. Papathanasiou. On upper boundsfor the variance of functions of random variables, Statist. Probab. Lett., 7(1985), 175-184.
T. Cacoullos and V. Papathanasiou. Caracterizations of distributuons by variance bounds, Math. Statist., 4(1989), 351-356.
Z. Dahmani. Fractional integral inequalities for continuous random variables. Malaya J. Mat., 2(2)(2014), 172179.
Z. Dahmani. New applications of fractional calculus on probabilistic random variables, Acta Math. Univ. Comenianae, 86(2)(2016), 1-9.
Z. Dahmani, A. Khameli, M. bezziou and M.Z. Sarikaya. Some estimations on continuous random variables involving fractional calculus, International Journal of Analysis and Applications, 15(1)(2017), 8-17.
Z. Dahmani, A.E. Bouziane, M. Houas and M.Z. Sarikaya. New $W$-weighted concepts for continuous random variables with applications, Note di. Mat., 37(2017), 23-40.
M. Houas, Z. Dahmani and M. Z. Sarikaya. New integral inequalities for $(r, alpha)$-fractional moments of continuous random variables, Mathematica, 60 (2)(2018), 166-176.
M. Houas, Z. Dahmani. Random variable inequalities involving $(k, s)$-integration, Malaya J. Mat. 5(4)(2017), 641-646.
M. Houas. Some inequalities for $k$-fractional continuous random variables, J. Advan. Res. In Dynamical and Control Systems, 7(4) (2015), 43-50.
M. Houas. Some estimations on continuous random variables for $(k, s)$-fractional integral operators. (Submitted).
P.Kumar. Inequalities involving moments of a continuous random variable defined over a finite interval, Comput. Math. Appl., 48(2004), 257-273.
P. Kumar. The Ostrowski type moment integral inequalities and moment-bounds for continuous random variables, Comput. Math. Appl., 49(2005), 1929-1940.
M. Niezgoda. New bounds for moments of continuous random variables, Comput. Math. Appl., 60 (12) (2010), 3130-3138.
M. Z. Sarikaya, Z. Dahmani, M.E. Kiris and F. Ahmad. $(k, s)$-Riemann-Liouville fractional integral and applications, Hacet J. Math. Stat., 45(1)(2016), 1-13.
M. Z. Sarikaya and A. Karaca. On the $k-$ RiemannLiouville fractional integral and applications, International Journal of Statistics and Mathematics, 1(3)(2014), 033-043.
M. Tomar, S. Maden, E. Set. $(k, s)$-Riemann-Liouville fractional integral inequalities for continuous random variables, Arab. J. Math., 6(2017), 55-63.
- NA
Similar Articles
- K.C. Deshmukh, Rajkumar N. Ingle, P. Thirupathi Reddy, A note on meromorphic functions with positive coefficients associated wth Bessel function , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.