Strong convergence of modified implicit hybrid S-iteration scheme for finite family of nonexpansive and asymptotically generalized \(\Phi\)-hemicontractive mappings
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0053Abstract
n this paper, we consider a modified implicit hybrid S-iteration scheme for finite family of nonexpansive and asymptotically generalized \(\Phi\)-hemicontractive mappings in the frame work of real Banach spaces. We remark that the iteration process of Kang et al. [17] can be obtained as a special case of our iteration process. Our result mainly improves and extends the result of Kang et al. [17] and several other results in the literation from the class of strongly psudocontractive mapping to the more general class asymptotically generalized \(\Phi\)-hemicontractive mappings. A different approach is used to obtain our result and the necessity of applying condition (C3) for the two mappings is weaken to only one mapping.
Keywords:
Fixed point, Banach space, Implicit hybrid S-iteration process, nonexpansive mapping, asymptotically generalized F-hemicontractive mapping.Mathematics Subject Classification:
Mathematics- Pages: 1643-1649
- Date Published: 01-01-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Y. I. Alber, C. E. Chidume, H. Zegeye, Regularization of nonlinear ill-posed equations with accretive operators, Fixed Point Theory and Applications, 1(2005), 11-33.
R. P. Argawal, Donal O'Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex. Anal., 8(1)(2007), 61-79.
S.S.Chang, Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129(2001), 845-853.
C. E. Chidume, C. O. Chidume, Convergence theorems for fixed points of uniformly continuous generalized $Phi$-hemi-contractive mappings, J. Math. Anal. Appl. 303(2005), 545-554.
C. E. Chidume, A. U. Bello, M. E. Okpala and P. Ndambomve, Strong convergence theorem for fixed points of nearly nniformly L-Lipschitzian Asymptotically Generalized $Phi$-hemicontractive mappings, International Journal of Mathematical Analysis, 9(52), (2015), $2555-2569$.
C.E.Chidume, C. O. Chidume, Convergence theorem for zeros of generalized Lipschitz generalized phi-quasiaccretive operators, Proc. Amer. Math. Soc., 134(2006), 243-251.
G. Das and J. P. Debata, Fixed points of Quasinonexpansive mappings, Indian J. Pure. Appl. Math., 17(1986), 1263-1269.
L.C. Deng, P. Cubiotti, J.C. Yao, Approximation of common fixed points of families of nonexpansive mappings, Taiwanese J. Math., 12(2008), 487-500.
L.C. Deng, P. Cubiotti, J.C. Yao, An implicit iteration scheme for monotone variational inequalities and fixed point problems, Nonlinear Anal., 69 (2008), 2445-2457.
L.C. Deng, S. Schaible, J.C. Yao, Implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of finitely many nonexpansive mappings, J. Optim. Theory Appl., 139(2008), 403-418.
S. Gopinath1, J. Gnanaraj, and S. Lalithambigai, Strong convergence for hybrid S-iteration scheme of nonexpansive and asymptotically demicontractive mappings, International Journal of Pure and Applied Mathematics, 110(1), (2016), 153-163.
S. Gopinath1, J. Gnanaraj and S. Lalithambigai, Strong convergence for hybrid S-iteration scheme of nonexpansive and and asymptotically demicontractive mappings,International J. Functional Analysis, Operator Theory and Applications, 9(1), (2017), 1-15.
F.Gu, Convergence theorems for $phi$-pseudocontractive type mappings in normed linear spaces, Northeast Math. J., 17(3), (2001), 340-346.
F. Gu, Strong convergence of an implicit iteration process for a finite family of uniformly $L$-Lipschitzian mapping in Banach spaces, Journal of Inequalities and Applications, doi:10.1155/2010/801961.
S. M. Kang, A. Rafiq, and Y. C. Kwun, Strong convergence for hybrid S-Iteration scheme, Journal of Applied Mathematics., 4(2013), Article ID 705814.
S. H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., 53(1) (2001), 143-148.
S. M. Kang, A. Rafiq, F. Ali and Y. C. Kwun, Strong convergence for hybrid implicit S-iteration scheme of nonexpansive and strongly pseudocontractive mappings, Abstract and Applied Analysis, 2014(2014), Article ID 735673, 5 pp. http://dx.doi.org/10.1155/2014/735673.
S. H. Khan, Y.J. Cho , M. Abbas, Convergence to common fixed points by a modified iteration process, Journal of Appl. Math. and Comput., doi: 10.1007/s12190-0100381-z.
S. H. Khan and I. Yildirim, M. Ozdemir, Some results for finite families of uniformly $L$-Lipschitzian mappings in Banach paces, Thai Journal of Mathematics, 9(2), (2011), 319-331.
J. K. Kim, D. R. sahu and Y. M. Nam, Convergence theorem for fixed points of nearly uniformly $L$-Lipschitzian asymptotically generalized $Phi$-hemicontractive mappings, Nonlinear Analysis: Theory, Methods and Applications, 71(2009), 2833-2838.
M. A. Krasnoselkii, Two remarks on the methods of successive approximations, Uspekhi Math. Nauk., 10(1955), $123-127$.
G. Lv, A. Rafiq and Z. Xue, Implicit iteration scheme for two phi-hemicontractive operators in arbitrary Banach spaces, Journal of Inequalities and Applications, (2013), http://www.journalofinequalitiesandapplications.com/ content/2013/1/521.
M. O. Osilike, Iterative solution of nonlinear equations of the $phi$-strongly accretive type, J. Math. Anal. Appl., 200(1996), 259-271.
D. R. Sahu, Approximations of the $S$-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12(1), (2011), 187-204.
D. R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Analysis Theory Methods and Applications, 74(17), (2011), 6012-6023.
W. Takahashi, Iterative methods for approximation of fixed points and their applications, J. Oper. Res. Soc. Jpn., 43(1), (2000), 87-108.
W. Takahashi and T. Tamura, Limit theorems of operators by convex combinations of nonexpansive retractions in Banach spaces, J. Approx. Theory., 91(3), (1997), 386397.
B. S. Thakur, Strong Convergence for Asymptotically generalized $Phi$-hemicontractive mappings, ROMAI J., 8(1), (2012), 165-171.
Schu, J: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43(1), (1991), 153-159.
K. K. Tan and H. K. Xu: Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Am. Math. Soc. 122(1994), 733-739.
X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proceedings of the American Mathematical Society, 113(2), (1991), 727-731.
L. P. Yang, Convergence theorem of an implicit iteration process for asymptotically pseudocontractive mappings, Bull. of the Iran. Math. Soc., 38(3), (2012), 699-713.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.